REDOX REACTIONS

Single Correct Answer Type

1.	Which among the followi	ng shows maximum oxidat	ion state?	
	a) V	b) Fe	c) Mn	d) Cr
2.	A substance, that by its sl	narp colour change indicate	es the completion of reaction	on is known as :
	a) Acid	b) Base	c) Indicator	d) None of these
3.	In the reaction, CH ₃ OH -	\rightarrow HCOOH, the number of e	lectrons that must be adde	d to the right is:
	a) 4	b) 3	c) 2	d) 1
4.	A solution of KMnO ₄ is re	duced to MnO ₂ . The norma	ality of solution is 0.6. The r	nolarity is:
	a) 1.8 M	b) 0.6 M	c) 0.1 M	d) 0.2 M
5.	In the reaction of ${\rm O}_3$ and	H_2O_2 , the later acts as:		
	a) Oxidising agent			
	b) Reducing agent			
	c) Bleaching agent			
	d) Both oxidising and ble	aching agent		
6.	Of the following reaction:	s, only one is a redox reacti	on. Identify this reaction.	
	a) $Ca(OH)_2 + 2HCI \rightarrow Ca$	$1Cl_2 + 2H_2O$	b) $2S_2O_7^{2-} + 2H_2O \rightarrow 2S$	$O_4^{2-} + 4H^+$
	c) $BaCl_2 + MgSO_4 \rightarrow BaS$	$SO_4 + MgCl_2$	d) $Cu_2S + 2FeO \rightarrow 2Cu + Cu$	- 2Fe + SO ₂
7.	Reductants are substance	es which :		
	a) Show an increase in th	eir oxidation number durir	ng a change	
	b) Lose electrons during	a change		
	c) Reduce others and oxi	dise themselves		
	d) All of the above			
8.	In the equation, $SnCl_2 + 3$	$2 \text{HgCl}_2 \rightarrow \text{Hg}_2 \text{Cl}_2 + \text{SnCl}_4$. The equivalent weight of s	tannous chloride (molecular
	weight $= 190$) will be:			
	a) 190	b) 95	c) 47.5	d) 154.5
9.		oth as oxidising and reduci		
	a) H ₂ SO ₄	b) H ₃ PO ₄	c) HNO ₂	d) HClO ₄
10.	Oxidation state of oxygen			
	a) NO ₂	b) MnO ₂	c) PbO ₂	d) Na ₂ O ₂
11.		passed in an acidified K ₂ Cr	₂ O ₇ solution, the oxidation	state of sulphur is changed
	from	V9/12/01/12	12 15 19 19E	7. A. C.
2020	a) 4 to 0	b) 4 to 2	c) 4 to 6	d) 6 to 4
12.	Reduction is a process wh	nich involves :		
	a) Electronation			
	b) Addition of hydrogen of			
	c) Addition of metal or re	emoval of non-metal		
	d) All of the above			: ::: ::::
13.		lost or gained during the cl		
	a) 2	b) 4	c) 6	d) 8
14.		uantitative chemical analy	sis involving the measure	ment of volume of reacting
	substance is known as:	1017-1	-) P-4 (-) 1(1)	D. N C.I 1
15	a) Gravimetric analysis	b) Volumetric analysis	c) Both (a) and (b)	d) None of the above
15.	which one of the following	ng reaction is possible at an	ode!	

	a) $F_2 + 2e^- \rightarrow 2F^-$		b) $2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow H$	1-0
	and an analysis and an analysi	2	4	120
	c) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O$		d) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	
16.	The anion nitrate is converted into ammonium ion. The equivalent mass of nitrate ion in the reaction would			
	be:	Charles and Charles	21 Market 400	rapportunite intervi
1990250		b) 7.75	c) 10.5	d) 21.0
17.	WI ich acts as a reducing a		2 - 21	100 000 0000
	a) HNO ₃	b) KMnO ₄	c) H ₂ SO ₄	d) (COOH) ₂
18.	What weight of HNO ₃ is no			
0.004(800)	a) 4.13 g	b) 24.8 g	c) 6.2 g	d) 10.2 g
19.	When SO ₂ is passed in acid	집 사이에 가득한다는 하나면 보고 아름이 있었다. 그 보기 쓰는 아니라 아름이 하는 아니라 되다.		
132	Tables on the control of the control	b) +4 to +2	c) +4 to +6	d) +6 to +4
20.	Among the properties give		ties shown by CN ⁻ ion tow	ards metal species is :
	1. Reducing; 2. Oxidising			1) 0 0
0.4200	a) 1, 3	b) 1, 2, 3	c) 1, 2	d) 2, 3
21.	Solution of sodium metal i	[12] B. B. H.	어린 [18] [18] [18] [18] [18] [18] [18] [18]	
00	A STATE OF THE PROPERTY OF THE	The Control of the Co	c) NaOH	d) Sodium amide
22.	Oxidation numbers of Fe in		2 14 2 10	D.M. Col
-00			c) +1 and +3	d) None of these
23.		i double salt isomorphous	with Mohr's salt. The oxi	dation number of V in this
	compound is :	13 . 2	5	D 4
24	NAME OF THE PARTY	b) + 2	c) + 4	d) -4
24.	MnO_4^- is a good oxidising a	agent in different medium	cnanging to	
	$MnO_4^- \rightarrow Mn^{2+}$			
	$\rightarrow MnO_4^{2-}$			
	$\rightarrow MnO_2$			
	\rightarrow Mn ₂ O ₃	han naanaatirralu ana		
	Changes in oxidation num		c) 5,1,3,4	4) 26 4 2
25	a) 1,3,4,5	b) 5,4,3,2	() 5,1,5,4	d) 2,6,4,3
25.	The oxidation number of E a) $+2$	b) -1	c) +4	d) +6
26	Strongest reducing agent a	- 34	C) T4	4) +0
20.	a) K	b) Mg	c) Al	d) Ba
27	The eq. wt. of $Na_2S_2O_3$ as a	, ,		
27.		b) (Mol. wt.)/2	c) (Mol. wt.)/6	d) (Mol. wt.)/8
28	When Fe metal is rusted th		c) (Moi. W.)/O	d) (Moi. We)/O
20.	a) Oxidised	b) Reduced	c) Hydrolysed	d) Precipitated
29.	The value of n in MnO $_4^-$ +	•		a) i recipitatea
	a) 5	b) 4	c) 2	d) 3
30.	In nitric oxide (NO), the ox			2,5
00.	a) -2	b) +1	c) -1	d) +2
31.	Reaction of acidified KMn0			7
	a) Fe ³⁺	b) CO ₂	c) Both (a) and (b)	d) None of these
32.				2.0 N solution of a reducing
ŭ - .	agent?	immon or an ommoning agen		
	a) 8 litre	b) 4 litre	c) 6 litre	d) 7 litre
33.	In which of the following o		(5)	,
	a) H ₂ O ₂	b) CO ₂	c) H ₂ O	d) OF ₂
34.	1 T T T T T T T T T T T T T T T T T T T			+ H ₂ O in the balanced form
er 18650)	respectively are	• 1985 1986 1986 - 1982 1894 1995 1995 1995 1995 1995 1995 1995 19		pri na #400 (4000) (4000) (4000) (4000) (5000) (4000) (5000)
	A TO HAND A CONTRACTOR AND THE STATE OF THE			

	a) 5, 1, 6 b) 1, 5, 6	c) 6, 1, 5	d) 5, 6, 1
35.	Which compound shows highest oxidati	on number for chlorine?	
	a) HCl b) KClO	c) KClO ₃	d) KClO ₄
36.	The number of Fe ²⁺ ion oxidised by one	mole of MnO ₄ ions is:	
	a) 1/5 b) 2/3	c) 5	d) 3/2
37.	The oxidation number and covalency of	15	15 A
	a) 0 and 2 b) + 6 and 8	c) 0 and 8	d) +6 and 2
38	The equivalent weight of iron in Fe ₂ O ₃ v	1997, 1997,	u) To una 2
50.	a) 18.6 b) 28	c) 56	d) 11
20		10 PM	u) II
39.	Oxidation number of carbon in carbon s		A.
	a) $+\frac{2}{3}$ b) $+\frac{4}{3}$	c) +4	d) $-\frac{4}{3}$
40	J	vino as intermediate solution along wi	3
40.	Volumetric estimation of CuSO ₄ using h	lypo as intermediate solution along wi	th Ki solution and starth as
	indicator is an example of:		D.N Cal
99	a) Redox titration b) Acid-base	titration c) Precipitation titration	d) None of these
41.	Oxidation state of oxygen in H ₂ O ₂ is	4	
	a) -1 b) $+2$	c) $+\frac{1}{2}$	d) -2
42	TATE OF THE STATE	2	
42.	Which reaction indicates the oxidising b		
	a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl +$	g = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	
	b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$		
	c) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$		
	d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$		
43.	HCO_3^- contains carbon in the oxidation s		
	a) +5 b) +1	c) +4	d) zero
44.	Oxidation state of oxygen atom in potas:		
	a) -1/2 b) Zero	c) +1/2	d) -2
45.	Which of the following reaction involves		
	a) NaBr + HCl \rightarrow NaCl + HBr	b) HBr $+AgNO_3 \rightarrow AgBr$	
	c) $H_2 + Br_2 \rightarrow 2HBr$	d) $Na_2O + H_2SO_4 \rightarrow Na_2$	$SO_4 + H_2O$
46.	The number of mole of oxalate ions oxid	lized by one mole of MnO_4^- ion is:	
		c) 5/2	d) 5
47.	The number of mole of KMnO ₄ that will	be needed to react completely with or	e mole of ferrous oxalate in
	acidic solution is:		
	a) 3/5 b) 2/5	c) 4/5	d) 1
48.	Equivalent mass of IO ₄ when it is conve	rted to I ₂ in acid medium :	
	a) M/6 b) M/7	c) M/5	d) M/4
49.	The eq. wt. of Fe_3O_4 in , Fe_3O_4 + KMnO	$O_4 \rightarrow Fe_2O_3 + MnO_2$ is:	
	a) M/6 b) M	c) 2 <i>M</i>	d) M/3
50.	What volume of 3 molar \ensuremath{HNO}_3 is needed	d to oxidise 8 g of Fe ²⁺ to Fe ³⁺ ? HNO ₃ , §	gets converted to NO :
	a) 8 mL b) 16 mL	c) 32 mL	d) 64 mL
51.	Which ordering of compounds is accord	ing to the decreasing order of the oxida	tion state of nitrogen?
	a) HNO ₃ , NO, NH ₄ Cl, N ₂ b) HNO ₃ , NO,	N ₂ , NH ₄ Cl c) HNO ₃ , NH ₄ Cl, NO, N ₂	d) NO, HNO ₃ , NH ₄ Cl, N ₂
52.	The oxidation states of iodine in HIO4, H	₃ IO ₅ and H ₅ IO ₆ are respectively	
	a) +1,+3,+7 b) +7,+7,+3	c) +7,+7,+7	d) +7,+5,+3
53.	In which reaction $H_2 \\ O_2$ acts as a reducir	ng agent?	
	a) $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$		
	b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$		
	c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$		
	d) $H_2O_2 + SO_2 \rightarrow H_2SO_4$		

54.	In the reaction; $2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4 + 2H_2O$	+ SO ₂ , H ₂ SO ₄ act as:	
	a) Oxidising agent b) Reducing agent	c) Dehydrating agent	d) None of these
55.	Oxidants are substances which:		
	a) Show a decrease in their oxidation number durin	ig a change	
	b) Gain electrons during a change		
	c) Oxidise others and reduce themselves		
	d) All of the above		
56.	One gas bleaches the colour of the flowers by reduc	nam nakan dalah kanani dalam sanaman sanan menganan sana sana	lation. The gases are :
	a) CO, Cl ₂ b) H ₂ S, Br ₂	c) SO ₂ , Cl ₂	d) NH ₃ , SO ₃
57.	5 g of a sample of bleaching powder is treated wi	th excess acetic acid and l	KI solution. The liberated I_2
	required 50 mL of $N/10$ hypo. The percentage of av	ailable chlorine in the samp	ole is :
	a) 3.55 b) 7.0	c) 35.5	d) 28.2% Cl ₂
58.	The oxidation number of iodine in IF_5 is:		
	a) +5 b) -5	c) -1	d) +1
59.	The eq. wt. of FeC_2O_4 in , $FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2$ is		
	a) its mol. wt. b) mol. wt./3	c) mol. wt./4	d) None of these
60.	Moles of H_2O_2 required for decolorizing 1 mole of a		
	a) 1/2 b) 3/2	c) 5/2	d) 7/2
61.	Oxidation number of sulphur in Caro's acid is		
	a) +6 b) +4	c) +8	d) +7
62.	The equivalent weight of a reductant or an oxidant	is given by :	
	a) Eq. wt. = $\frac{\text{mol. weight of reductatn or oxidant}}{\text{no. of electrons lost or gained by}}$		
	1 molecule of reductant or oxidant mol. wt.		
	b) Eq. wt. = $\frac{\text{mol. wt.}}{\text{valence}}$		
	mol. wt.		
	c) Eq. wt. = $\frac{1}{\text{total charge on cation or anion}}$		
	d) All of the above		
63.	In presence of dil. H ₂ SO ₄ . The equivalent weight of	KMnO ₄ is :	
	a) 1/5 of its molecular weight		
	b) 1/6 of its molecular weight		
	c) 1/10 of its molecular weight		
	d) 1/2 of its molecular weight		
64.	Respiration is:		
	a) Oxidation b) Reduction	c) Both (a) and (b)	d) None of these
65.	$aK_2Cr_2O_7 + bKCl + cH_2SO_4 \rightarrow xCrO_2Cl_2 + yKHSO_4$	$_4 + zH_2O$.	
	The above equation balances when		
	a) $a = 2$, $b = 4$, $c = 6$ and $x = 2$, $y = 6$, $z = 3$		
	b) $a = 4, b = 2, c = 6$ and $x = 6, y = 2, z = 3$		
	c) $a = 6, b = 4, c = 2$ and $x = 6, y = 3, z = 2$		
	d) $a = 1, b = 4, c = 6$ and $x = 2, y = 6, z = 3$		
66.	Which of the following shows highest ox, no. in com		
	a) Os b) Ru	c) Both (a) and (b)	d) None of these
67.	The oxidation number of sulphur in H ₂ S ₂ O ₈ is :	4 7 2 1	02 10 100
157.5	a) +2 b) +6	c) +7	d) +14
68.	In the following reaction		
	$M^{x+} + \text{MnO}_4 \qquad M\text{O}_3 + \text{Mn}^{2+} + \frac{1}{2}\text{O}_2,$		
	If one mole of MnO ₄ oxidises 2.5 moles of M^{x+} then	the value of r is	
	a) 5 b) 3	c) 4	d) 2
	., c	~, .	~,) M

69.	What volume of N K ₂ Cr ₂ O ₇ solution is required to	oxidise (in acid solution) a	a solution containing 10 g of
	$FeSO_4$? (mol.wt.of $FeSO_4 = 152$)		
	a) 65.78 mL b) 134 mL	c) 35 mL	d) 33.5 mL
70.	Bleaching action of chlorine in presence of moisture		
	a) Reduction b) Oxidation	c) Hydrolysis	d) substitution
71.	A mixture of potassium chlorate, oxalic acid and se	17	1 To
	reaction which element undergoes maximum chang	e in the oxidation number?	
	a) Cl		
	b) C		
	c) S		
	d) H		
72.	Stannous chloride gives a white precipitate with a	solution of mercuric chlori	de. In this process mercuric
	chloride is:		
	a) Oxidized		
	b) Reduced	¥	
	c) Converted into a complex compound containing S	on and Hg	
=-	d) Converted into a chloro complex of Hg	1.1	r.
/3.	In the titration of CuSO ₄ vs. Hypo in presence of KI,	which statement is wrong?	
	a) It is iodometric titration		
	b) I ₂ with starch gives blue colour	1970	
	c) CuSO ₄ is reduced to white Cu ₂ I ₂ during redox cha		
74	d) The solution before titration, on addition of KI ap		
/4.	Manganese acts as strongest oxidising agent in the a a) +7 b) +2	c) +4	d) +5
75	The value of n' in the reaction	C) T4	u) +3
73.	$Cr_2O_7^{2-} + 14H^+ + nFe^{2+} \rightarrow 2Cr^{3+} + nFe^{3+} + 7H^2C$	1	
	will be	,	
	a) 2 b) 3	c) 6	d) 7
76	In a reaction 4 mole of electrons are transferred to or		
,	reduction product is :		as as an smaame the possible
	a) (1/2) mole N ₂ b) (1/2) mole N ₂ 0	c) 1 mole of NO ₂	d) 1 mole NH ₃
77.	The oxidation number of phosphorus in PO_4^{3-} , P_4O_{10}	10.00 mm	cr)
	a) +3 b) +2	c) -3	d) +5
78.	In the equation ,	-	
	$CrO_4^2 + SO_3^2 Cr(OH)_4 + SO_4^2$		
	the oxidation number of Cr changes from		
	a) 6 to 4 b) 6 to 3	c) 8 to 4	d) 4 to 3
79.	Oxidation numbers of P in PO_4^{3-} of S in SO_4^{2-} and that		
	a) -3 , $+6$ and $+6$ b) $+5$, $+6$ and $+6$	c) +3, +6 and +5	d) $+5$, $+3$ and $+6$
80.	In alkaline condition KMnO ₄ reacts as follows,	1997 - DO SERVE BENEZIARO PROPERCIONALES	\$1.50 TAX 1.00 C \$100 ALC C C C C C C C C C C C C C C C C C C
	$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$		
	Therefore, its equivalent weight will be:		
	a) 31.6 b) 52.7	c) 79.0	d) 158.0
81.	Oxidation number of S in SO ₄ ²⁻		
	a) +6 b) +3	c) +2	d) -2
82.	Which of the following is redox reaction?		
	a) $N_2O_5 + H_2O \rightarrow 2HNO_3$		
	b) $AgNO_3 + KI \rightarrow AgI + KNO_3$		
	c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$		
	d) $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg$		

83	In which of the following compounds, the oxid	dation number of iodine is	fractional?
03.	a) IF ₃ b) IF ₅	c) I ₃	d) IF ₇
84	The oxidation number of Cl in KClO ₃ is:	c) 13	u) II 7
01.	a) +5 b) -5	c) +3	d) -3
85.	The oxidation number of oxygen in KO ₃ , Na ₂ O		u) 0
00.	a) 3,2 b) 1,0	c) 0,1	d) $-0.33,-1$
86.	In the reaction, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$,		
	a) Its molecular weight		5 1500 5.5 5.3 . 500 5.50
	b) 1/2 of its molecular weight		
	c) 1/4 of its molecular weight		
	d) Twice the molecular weight		
87.	The maximum oxidation number of transition	metals may be:	
	a) +4 b) +6	c) +8	d) +10
88.	The ratio of amounts of H ₂ S needed to precipi	tate all the metal ions from	$100 \text{ mL } 1M \text{ AgNO}_3 \text{ and } 100 \text{ mL of}$
	1M CuSO ₄ is:		
	a) 1:2 b) 2:1	c) Zero	d) infinite
89.	Oxidation state of sulphur in Na ₂ S ₂ O ₃ and Na		
	a) 4 and 6 b) 3 and 5	c) 2 and 2.5	d) 6 and 6
90.	Number of K^+ ions and mole of K^+ ions present	nt in 1 litre of $\frac{N}{5}$ KMnO ₄ aci	dified solution respectively are :
	a) 0.04 and 2.4 \times 10 ²²		
	b) 2.4×10^{22} and 0.04		
	c) 200 and 6.023×10^{23}		
	d) 6.023×10^{23} and 200		
91.	Conversion of PbSO ₄ to PbS is :		
	a) Reduction of S b) Oxidation of S	c) Dissociation	d) None of these
92.	Which change requires a reducing agent?		**************************************
	a) $CrO_4^{2-} \rightarrow CrO_7^{2-}$ b) $BrO_3^- \rightarrow BrO^-$		d) $Al(OH)_3 \rightarrow Al(OH)_4^-$
93.	In the reaction, $N_2 \rightarrow NH_3$. The eq.wt. of N_2 a		
	a) $\frac{28}{3}$, $\frac{17}{3}$ b) $\frac{28}{6}$, $\frac{17}{3}$	c) $\frac{28}{2}$, $\frac{17}{2}$	d) $\frac{28}{5}$, $\frac{17}{5}$
94	Which acts as reducing agent as well as oxidis	2 2	5 5
, 1.	a) O ₃ b) ClO ₄	c) F ₂	d) MnO_4^-
95.	When Cl ₂ gas reacts with hot and concentrated		
	changes from :		
	a) Zero to -1 and zero to $+3$		
	b) Zero to $+1$ and zero to -3		
	c) Zero to $+1$ and zero to -5		
	d) Zero to -1 and zero to $+5$		
96.	Which of the following is not a redox reaction	?	
	a) $2Na + Cl_2 \rightarrow 2NaCl$	b) $C + O_2 \rightarrow CO_2$	
	c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$	d) $Zn + H_2SO_4 \rightarrow Z$	2016 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
97.	The difference in the oxidation numbers of the		
	a) 4 b) 5	c) 6	d) 7
98.	A compound contains atoms X, Y, Z . The oxid	lation number of X is $+2$,	Y is $+5$ and Z is -2 . The possible
	formula of the compound is:	-) V (V7)	1) V (V 2)
00	a) XY_1Z_2 b) $Y_2(XZ_3)_2$	c) $X_3(YZ_4)_2$	d) $X_3(Y_4Z)_2$
99.	The equivalent weight of SnCl ₂ in the reaction a) 49 b) 95	$(1, SnCl_2 + Cl_2 \rightarrow SnCl_4)$ is: $(2, SnCl_2 + Cl_2 \rightarrow SnCl_4)$	d) 59
100	. What is the ox. no. of Mn in K ₂ MnO ₄ ?	C) 43	u) 37
100	a) +4 b) +6	c) +2	d) +8
	-5, -	· j 1 · i	<u>., </u>

101. The stable oxidation st	tates of Mn are :		
a) $+2, +3$	b) +3, +7	c) $+2, +7$	d) +3, +5
			olution. Which of the following
statements is true?			
a) 0.010 mole of oxyge	en is liberated		
b) 0.005 mole of KMn(
c) 0.030 g atom of oxy	(5)		
	loes not react with KMnO ₄		
103. Oxidation number of c			
a) +2	b) -2	c) +1	d) +3
104. The oxidation state of	0 0		57 J. Carlotto
a) Zero	b) +4	c) +8	d) + 2
V.47.3		· ·	it is converted into K ₂ MnO ₄ is
:	4	4	2
a) <i>M</i>	b) M/3	c) M/5	d) M/7
	In in K ₂ MnO ₄ and MnSO ₄ ar	55	
a) $+ 7$ and $+ 2$	b) +6 and +2	c) +5 and +2	d) +2 and +6
15	ription of behaviour of bron	nine in the reaction given b	1D
$H_2O + Br_2 \rightarrow HBr + 1$:51	
a) Proton accepted on	ly	b) Both oxidised and re	duced
c) Oxidised only		d) Reduced only	
108. The oxidation number	of P in KH ₂ PO ₂ is:		
a) +1	b) +3	c) -3	d) +5
109. LiAIH4 is used as:			
a) Oxidising agent	b) Reducing agent	c) A mordant	d) Water softner
110. The brown ring compl	ex [Fe(H2O)5NO+]SO4 has o	x.no. of Fe :	
a) +1	b) +2	c) +3	d) +4
111. The oxidation state of	Fe in Fe ₃ O ₄ is		
a) $+3$	b) 8/3	c) +6	d) +2
112. In the reactions; As ₂ S ₃	$+ HNO_3 \rightarrow H_3AsO_4 + H_2S$	O_4 + NO, the element oxid	ized is/ are :
a) As only	b) S only	c) N only	d) As and S both
113. The eq. wt. of KMnO ₄ i	n the reaction, $MnO_4^- + Mn^2$	$^{+} + H_2O \rightarrow MnO_2 + H^+ $	(unbalanced) is :
a) 52.7	b) 158	c) 31.6	d) None of these
114. NO ₃ ions are converte	d to NH ⁺ ions by a suitable	reactant. The equivalent m	ass of NO_3^- and NH_4^+ are :
a) 7.75, 2.25	b) 7.75, 7.75	c) 2.25, 7.75	d) 2.25, 2.25
115. Oxidation number of c	hlorine in HClO ₄ is :		
a) +1	b) -1	c) -7	d) +7
116. Iodine has +7 oxidatio	on state in :		
a) HIO ₄	b) H ₃ IO ₅	c) H ₅ IO ₆	d) all of these
117. The violent reaction be	etween sodium and water is	an example of :	
a) Reduction			
b) Oxidation			
c) Redox reaction			
d) neutralisation react			
118. Oxidation number of F	e in K ₃ [Fe(CN) ₆] is:		
a) +2	b) +3	c) +4	d) +1
	K ₂ Cr ₂ O ₇ on reaction with ex		
a) 6	b) 1	c) 7	d) 3
5 37	hlorine from HCl, MnO ₂ acts		
 a) Reducing agent 	b) oxidising agent	c) Catalytic agent	d) Dehydrating agent

121. What volume of O_2 measured at standard conditions will be formed by the action of 100 mL of 0.5 N KMn O_4 on hydrogen peroxide in an acidic solution? The skeleton equation for the reaction is,				
$KMnO_4 + H_2SO_4 + H_2O_2 \rightarrow KHSO_4 + MnSO_4 + H_2$	$0 + 0_2$:			
a) 0.12 litre b) 0.28 litre	c) 0.56 litre	d) 1.12 litre		
122. Which quantities are conserved in all oxidation-red	uction reactions?			
a) Charge only	b) Mass only			
c) Both charge and mass	d) Neither charge nor ma	ass		
123. Which substance serves as a reducing agent in the f				
$14H^{+} + Cr_{2}O_{7}^{2-} + 3Ni \rightarrow 2Cr^{3+} + 7H_{2}O + 3Ni^{2+}$. (j. 1.) al 1. (s. 1.) 1. (s. 1.			
a) H ₂ O b) Ni	c) H ⁺	d) $Cr_2O_7^{2-}$		
124. Which of the following chemical reactions depicts the	*			
a) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$	b) $Ca(OH)_2 + H_2SO_4 \rightarrow$			
c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$	d) $2PCl_5 + H_2SO_4 \rightarrow 2P$			
125. In the aluminothermic process, aluminium acts as:	u) 21 015 1 112004 - 21	0013 1 21101 1 002012		
a) An oxidising agent b) A flux	c) A reducing agent	d) A solder		
126. In the reaction, $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$ the subs		u) II soldel		
a) H ₂ S b) SO ₂	c) S	d) H ₂ O		
127. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S re	15	u) 1120		
a) 0, +1 and -2 b) +2, +1 and -2	가득하다 맛있다면 있다면 하면 맛이 보면하다면 있는	d) -2 , $+1$ and -2		
128. Maximum oxidation state is present in :	c) 0, +1 and +2	uj –2, +1 aliu –2		
a) CrO ₂ Cl ₂ and MnO ₄				
b) MnO ₂				
c) $[Fe(CN)_6]^{3-}$ and $[Co(CN)_6]^{3-}$				
1. 레스티워크 및 이 시간에 보면 1. 프로그램 1.				
d) MnO	! !t 1.7			
129. With which element oxygen shows positive oxidation		D.F.		
a) Na b) Cl	c) N	d) F		
130. What is the oxidation number of chlorine in ClO_3^- ?	2.7	D		
a) +5 b) +3	c) +4	d) +2		
131. NaClO solution reacts with H_2SO_3 as, NaClO + H_2SO_3	4 THE	W		
A solution of NaClO used in the above reaction co	ontained 15 g of NaClO pe	r litre. The normality of the		
solution would be:				
a) 0.40 b) 0.20	c) 0.60	d) 0.80		
132. In sodium hydride, oxidation state of sodium is :		33.10.20		
a) Zero b) +1	c) -1	d) +2		
133. The oxidation number of xenon in $XeOF_2$ is	⊕ D.	822 8		
a) Zero b) 2	c) 4	d) 3		
134. Which is not a redox reaction?				
a) $H_2 + Br_2 \rightarrow 2HBr$				
b) $NH_4Cl \rightarrow NH_3 + HCl$				
c) $NH_4NO_3 \rightarrow N_2O + 2H_2O$				
d) Fe + S \rightarrow FeS				
135. In C + $H_2O \rightarrow CO + H_2$; H_2O acts as:				
a) Oxidant b) Reductant	c) Both (a) and (b)	d) None of these		
136. Millimole of a solute in a solution can be given by :				
a) $M \times V_{\text{in litre}}$ b) $M \times V_{\text{in mL}}$	c) $\frac{\text{wt.}}{\text{mol. wt.}} \times 1000$	d) Both (b) and (c)		
137. The oxidation number of carbon in $H_2C_2O_4$ is :				
a) +2 b) +3	c) +4	d) +1		
138. What is the oxidation state of P in Ba $(H_2PO_2)_2$?	<u> </u>	15		
a) +1 b) +2	c) +3	d) -1		
2000 2000 3000 3000 3000 3000 3000 3000	WWT 07 5F	ACCUPATION TO ACCUPATION OF THE PARTY OF THE		

139. Oxidation state of +1 for	51		
a) H ₃ PO ₃	b) H ₃ PO ₄	c) H_3PO_2	d) $H_4P_2O_7$
140. Oxidation number of S	AND STANDARD OF STANDARD STANDARD	3 6	D
a) Zero	b) +1	c) +2	d) +3
	nderlined substance has bee		
15.00	copper oxide → carbon dio	C. S	
	rochloric acid → water + co	pper chioride	
 c) <u>Steam</u> + iron → hyc d) <u>Hydrogen</u> + iron oxi 			
	$KCIO_3$ to KCl and O_2 on heati	ng is an avample of	
a) Intermolecular redo		ing is an example of .	
b) Intramolecular redo			
c) Disproportionation			
d) None of the above	or dato redox endinge		
20 등 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to in presence of acidize	ed KMnO4.	
a) Fe ²⁺	b) Fe ³⁺	c) Fe	d) None of these
144. Fluorine is a strong oxi	dising agent because :	3 mm	
a) It has several isotop			
	nas 7 electrons in valency she	ell	
c) Its valency is one	orderen (u. 2014). Helder i Stander Huste forderen kontrolle i der Gerein (u. 44. de seut Gerein (u. 44. de seut		
d) It is the first membe	r of the halogen series		
145. In the conversion of Br	$_2$ to Br 0_3^- , the oxidation num	ber of Br changes from	
a) Zero to +5	b) +1 to +5	c) Zero to -3	d) $+2$ to $+5$
146. The oxidation number	of Cr in CrO ₅ is		
a) +3	b) +5	c) +6	d) 0
147. An indicator used for re			
a) Either an oxidant or			
b) Neither an oxidant n	or a reductant		
c) Acid or base			
d) None of the above) to give Cu (CO) H O ev	d O Malas of O liberat	ad by 1 mala of CuO in this
	n_4 to give $Cr_2(50_4)_3$, H_2O ar	id O ₂ . Moles of O ₂ liberau	ed by 1 mole of CrO ₅ in this
reaction are : a) 2.5	b) 1.25	c) 4.5	d) 1.75
	on, $4P + 3KOH + 3H_2O \rightarrow 3H_3$		u) 1.75
a) P is only oxidized	ni, 11 + 5K011 + 5H2O 7 51	b) P is only reduced	
c) P is both oxidized as	well as reduced	d) None of the above	
150. Oxidation number of P		,	
a) +3	b) +4	c) +5	d) +6
	Cr ₂ O ₇ to K ₂ CrO ₄ the oxidation		-,
a) Increases	b) Remains the same	c) Decreases	d) None of these
152. In which of the following	ng, the oxidation number of o		
a) $OF_2 < KO_2 < BaO_2$	< 0 ₃	b) $BaO_2 < KO_2 < O_3 < O_3$	OF ₂
c) $BaO_2 < O_3 < OF_2 <$	KO ₂	d) None of these	
153. Oxidation number of so	odium in sodium amalgam is	:	
a) +2	b) +1	c) -2	d) zero
154. The apparatus in which	n standard solution is prepar	ed is known as :	
a) Measuring flask	b) Round bottom flask	c) Burette	d) None of these
	Indicator for FeSO ₄ vs. K		
a) Self	b) External	c) Internal	d) Not an
156. The oxidation number	of N in $N_2H_5^+$ is:		

a) -2	b) +3	c) +2	d) -3
157. Which can act as oxi		್	*
a) H ₂ O ₂	b) H ₂ S	c) NH ₃	d) None of these
158. What weight of HNO	O_3 is needed to convert 5 g	g of iodine into iodic acid a	according to the reaction, I_2 +
$HNO_3 \rightarrow HIO_3 + NO_3$	$O_2 + H_2 O$?		
a) 12.4 g	b) 24.8 g	c) 0.248 g	d) 49.6 g
159. In which SO ₂ acts as	oxidant, while reacting with	:	
a) Acidified KMnO ₄	b) Acidified K ₂ Cr ₂ O ₇	c) H ₂ S	d) Acidified C ₂ H ₅ OH
160. HBr and HI reduce H	₂ SO ₄ , HCl can reduce KMnO	₄ and HF can reduce:	
a) H_2SO_4	b) $K_2Cr_2O_7$	c) KMnO ₄	d) None of these
161. Equivalent mass of N	Ia ₂ S ₂ O ₃ in its reaction with	I ₂ is equal to :	
a) Molar mass	b) Molar mass / 2	c) Molar mass / 3	d) Molar mass / 4
	ng change represents a disp	roportionation reaction(s)?	
a) $Cl_2 + 2OH^- \rightarrow C$			
b) $Cu_2O + 2H^+ \rightarrow O$			
c) 2HCuCl ₂ Dilution v	$cu + Cu^{2+} + 4C1 + 2H$	+	
d) All of the above	f'N' in N. H(hudragaic acid)	io	
	f 'N' in N ₃ H(hydrazoic acid)	c) 0	
a) $-\frac{1}{3}$	b) +3	c) 0	d) -3
164. Cerric ammonium su	ılphate and potassium perm	anganate are used as oxidis	ing agents in acidic medium
	ous ammonium sulphate to f		(ASS - 1873)
		27.	e number of moles of KMnO ₄
이 나는 사람들이 얼마나 하는 살아 있다면 하나 없다면 하나 없다.	ferrous ammonium sulphat		•
a) 5.0	b) 0.2	c) 0.6	d) 2.0
165. Eq.wt. of NH ₃ in, NH	$_3 + O_2 \rightarrow NO + H_2O$ is:	Property and Company	
a) 3.4	b) 17	c) 8.5	d) None of these
166. Carbon is in the lowe	est oxidation state in :		
a) CH ₄	b) CCl ₄	c) CO ₂	d) CF ₄
167. When the ion $Cr_2O_7^2$	acts as an oxidant in acidic	aqueous solution the ion (Cr ³⁺ is formed. How many mole
of Sn ²⁺ would be oxi	dised to Sn ⁴⁺ by one of Cr ₂ C	0_7^{2-} ions?	
a) 2/3	b) 3/2	c) 2	d) 3
168. 100 mL of 0.1 Msolu	ition of a reductant is diluted	d to 1 litre, which of the follo	owing changes?
a) Molarity	b) Millimole	c) Milliequivalent	d) None of these
169. If H ₂ S is passed thro	ugh an acidified K ₂ Cr ₂ O ₇ so	lution, the colour of the solu	tion:
 a) Will remain unch 	anged		
b) Will change to dee	T/		
c) Will change to dan			
d) Will change to dar			
170. Ozone tails mercury.			
a) Reduction	b) Oxidation	c) Substitution	d) None of these
	er of Cr in [Cr(NH ₃) ₄ Cl ₂] ⁺ is		
a) +3	b) +2	c) +1	d) zero
	$-\text{Fe}_2\text{O}_3 \rightarrow \text{FeO} + \text{V}_2\text{O}_5$. The		
a) mol. wt.	b) mol. wt./8	c) mol. wt./6	d) None of these
	4 as an oxidising agent in act		D 6-1-376
a) (mol. wt.)/2	b) (2 × mol. wt.)/3	c) (mol. wt.)/3	d) (mol. wt.)/6
	lves neither oxidation nor re		1) 20 02-
a) $CrO_4^2 \rightarrow Cr_2O_7^2$	b) $Cr \rightarrow CrCl_3$	c) Na \rightarrow Na ⁺	d) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$

1/5. The number of equiv	alent per mole of H2S use	ed in its oxidation to SO_2 is:	
a) 3	b) 6	c) 4	d) 2
176. Oxidation number of		**************************************	•
a) +2	b) +4	c) +6	d) -2
177. Which can have both	+ve and -ve oxidation s	tates?	
a) F	b) I	c) Na	d) He
178. Milliequivalent of a s	olute in a solution can be	given by:	্ত
a) $Mz_{eq.} = M \times V_{in}$	mL		
b) M_{eq} . = $N \times V_{\text{in n}}$	nI.		
c) $Mz_{eq} = \frac{\text{wt}}{\text{Eq. wt}} \times 1$			
	000		
d) Both (b) and (c)			
	h an acidified solution of	copper sulphate and a black	precipitate is formed. This is due
to:			
a) Oxidation of Cu ²⁺			
b) Reduction of Cu ²⁺			
c) Double decompos			
d) Reduction and oxi		*	
180. Iodine has highest ox		200 2 18000000000000000000000000000000000000	D 177
a) KIO ₄	b) IF ₅	c) KI ₂	d) KI
181. Oxidation number of			Press Americans
a) +2		c) 4	d) zero
182. In the reaction, Cr ₂ O	$\frac{1}{7} + 14H^{+} + 6I^{-} \rightarrow 2Cr$	$r^{3+} + 3H_2O + 3I_2$, The eq.wt.	
a) $\frac{\text{mol. wt.}}{3}$	b) $\frac{\text{at. wt.}}{6}$	c) at. wt.	d) $\frac{\text{mol. wt.}}{\epsilon}$
	9	$O_2 + H_2O$ the substance und	0
a) H_2O_2	b) Na ₂ CO ₃ \rightarrow Na ₂ O ₂ \rightarrow CO ₃	$0_2 + 11_20$ the substance und c) Na ₂ 0 ₂	d) None of these
184. The least count of bu			u) None of these
a) 0.1 mL	b) 0.01 mL	c) 0.2 mL	d) 0.02 mL
			ogen in negative oxidation state
is	arts and riggitz, the fram	iber of molecules having mer	ogen in negative oxidation state
a) 1	13.0	a) 2	d) 4
aj I	hl 2		u i i
186. In which iron has the	b) 2 lowest oxidation state?	c) 3	100 9 100
186. In which iron has the	25	c) s	o > to
a) Fe(CO) ₅	25	c) s	a y
a) Fe(CO) ₅ b) Fe ₂ O	25	<i>c</i>) s	a y
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆	e lowest oxidation state?	c) s	a y
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄	e lowest oxidation state? $6 H_2 O$		2000 Magazin
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u	e lowest oxidation state? a. 6H ₂ O ased normally for weighin	g in laboratory can weigh up	oto a least count of :
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g	e lowest oxidation state? a. $6H_2O$ ased normally for weighin b) 0.001 g	g in laboratory can weigh up c) 0.0002 g	2000 Magazin
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv	e lowest oxidation state? a. 6H ₂ O sed normally for weighin b) 0.001 g red in water, the sodium is	g in laboratory can weigh up c) 0.0002 g on becomes :	oto a least count of : d) 0.002 g
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized	e lowest oxidation state? a. 6H ₂ O sed normally for weighin b) 0.001 g red in water, the sodium is b) Reduced	g in laboratory can weigh up c) 0.0002 g	oto a least count of :
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox	e lowest oxidation state? a. 6H ₂ O ased normally for weighin b) 0.001 g red in water, the sodium in b) Reduced reaction?	g in laboratory can weigh up c) 0.0002 g on becomes :	oto a least count of : d) 0.002 g
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) BaO ₂ + H ₂ SO ₄ →	e lowest oxidation state? a. $6H_2O$ sed normally for weighin b) 0.001 g red in water, the sodium is b) Reduced reaction? BaSO ₄ + H_2O_2	g in laboratory can weigh up c) 0.0002 g on becomes :	oto a least count of : d) 0.002 g
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox	e lowest oxidation state? a. $6H_2O$ ased normally for weighin b) 0.001 g red in water, the sodium in b) Reduced reaction? BaSO ₄ + H_2O_2	g in laboratory can weigh up c) 0.0002 g on becomes :	oto a least count of : d) 0.002 g
a) $Fe(CO)_5$ b) Fe_2O c) $K_4Fe(CN)_6$ d) $FeSO_4$. $(NH_4)2SO_4$ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) $BaO_2 + H_2SO_4 \rightarrow$ b) $2BaO + O_2 \rightarrow 2B$	e lowest oxidation state? 2. $6H_2O$ 2. $6H_2O$ 2. $6H_2O$ 2. $6H_2O$ 2. $6H_2O$ 2. $6H_2O$ 3. $6H_2O$ 3. $6H_2O$ 4. $6H_2O$ 5. $6H_2O$ 6. $6H_2O$ 7. $6H_2O$ 7. $6H_2O$ 8.	g in laboratory can weigh up c) 0.0002 g on becomes :	oto a least count of : d) 0.002 g
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) BaO ₂ + H ₂ SO ₄ → b) 2BaO + O ₂ → 2B c) 4KClO ₃ → 4KClO d) SO ₂ + 2H ₂ S → 2D	e lowest oxidation state? a. $6H_2O$ ised normally for weighin b) 0.001 g red in water, the sodium in b) Reduced reaction? $BaSO_4 + H_2O_2$ $BaSO_2$ $BaSO_2 + 2O_2$ $BaSO_4 + 3S$	g in laboratory can weigh up c) 0.0002 g on becomes : c) Hydrolysed	oto a least count of : d) 0.002 g
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) BaO ₂ + H ₂ SO ₄ → b) 2BaO + O ₂ → 2B c) 4KClO ₃ → 4KClO d) SO ₂ + 2H ₂ S → 2D	e lowest oxidation state? a. $6H_2O$ ised normally for weighin b) 0.001 g red in water, the sodium in b) Reduced reaction? $BaSO_4 + H_2O_2$ $BaSO_2$ $BaSO_2 + 2O_2$ $BaSO_4 + 3S$	g in laboratory can weigh up c) 0.0002 g on becomes : c) Hydrolysed	oto a least count of : d) 0.002 g d) hydrated
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) BaO ₂ + H ₂ SO ₄ → b) 2BaO + O ₂ → 2B c) 4KClO ₃ → 4KClO d) SO ₂ + 2H ₂ S → 21 190. When BrO ₃ ion react	e lowest oxidation state? 2.6 H_2O 2.6ed normally for weighin b) 0.001 g 2.7ed in water, the sodium is b) Reduced reaction? BaSO ₄ + H_2O_2 2.7ed 2.7ed 2.7ed 2.7ed 3.8ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.	g in laboratory can weigh up c) 0.0002 g on becomes : c) Hydrolysed olution Br ₂ is liberated. The	oto a least count of : d) 0.002 g d) hydrated equivalent weight of KBrO ₃ is :
a) Fe(CO) ₅ b) Fe ₂ O c) K ₄ Fe(CN) ₆ d) FeSO ₄ . (NH ₄)2SO ₄ 187. A chemical balance u a) 0.0001 g 188. When NaCl is dissolv a) Oxidized 189. Which is not a redox a) BaO ₂ + H ₂ SO ₄ → b) 2BaO + O ₂ → 2B c) 4KClO ₃ → 4KClO d) SO ₂ + 2H ₂ S → 20 190. When BrO ₃ ion react a) M/8	e lowest oxidation state? 2.6 H_2O 2.6ed normally for weighin b) 0.001 g 2.7ed in water, the sodium is b) Reduced reaction? BaSO ₄ + H_2O_2 2.7ed 2.7ed 2.7ed 2.7ed 3.8ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.ed 3.	g in laboratory can weigh up c) 0.0002 g on becomes : c) Hydrolysed olution Br ₂ is liberated. The	oto a least count of : d) 0.002 g d) hydrated equivalent weight of KBrO ₃ is :

	h) Noutralization process			
	b) Neutralization process			
	c) Precipitation process			
102	d) None of these	nvalving a calution contain	ing Fo ² + ions against MnO	- in the nuccenae of evene
192.		nvolving a solution contain		4 in the presence of excess
		electrons that gets transfer		1) 2
102	a) 6	b) 5	c) 4	d) 2
193.		oxidation number of chloring		D Helo
404	a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
194.		$+ 2Cl^- \rightarrow Zn^{2+} 2Cl^- + H$		N 411 - 6.1
	a) Cl ⁻	b) Zn ²⁺	c) H ⁺	d) All of these
195.	Turn bull's blue is:			
	그리겠어요 아니까겠다고 하면 다음이 얼마가 뭐		c) $K_3 Fe(CN)_6$	d) Na ₄ Fe(CN) ₆
196.		n by silicon when it combin		
	a) -2	b) -4	c) +4	d) +2
197.		ork both as an oxidising an		
	a) KMnO ₄	b) H ₂ O ₂	c) $Fe_2(SO_4)_3$	d) $K_2Cr_2O_7$
198.				$\mathrm{Cr_2O_7^{2-}}$ in acidic medium. In
	. 하고 18 10 20 20 20 20 20 20 20 20 20 20 20 20 20	atint i i i i i i i i i i i i i i i i i i	used for 3.26 $ imes$ 10^{-3} mole	e of <i>ABD</i> . The new oxidation
	number of A after oxidation	on is :		
	a) 3	b) $3 - n$	c) $n - 3$	d) +n
199.	The burning of hydrogen i	is called :		
	a) Hydrogenation	b) Hydration	c) Oxidation	d) reduction
200.	Oxidation number of chlor	rine in chlorine heptaoxide	is:	
	a) +1	b) +4	c) +6	d) +7
201.	The correct order of reduc	cing power of halide ions is		
	a) $Cl^- > Br^- > I^- > F^-$			
	b) $Cl^- > I^- > Br^- > F^-$			
	c) $Br^- > Cl^- > I^- > F^-$			
	d) $I^- > Br^- > Cl^- > F^-$			
202.	The reaction, $3ClO^{-}(aq)$	\rightarrow ClO ₃ ⁻ (aq) + 2Cl ⁻ (aq) is	an example of:	
	a) Oxidation reaction			
	b) Reduction reaction			
	c) Disproportionation rea	ection		
	d) Decomposition reaction	n		
203.	The ox.no. of S in Na ₂ S ₄ O ₆	is:		
	a) $+ 2.5$			
	b) +2 and +3 (two S have	+2 and other two have +3)	
	c) +2 and +3 (three S have	ve +2 and one S has +3)		
	d) +5 and 0 (two S have +	-5 and the other two S have	e 0)	
204.	Oxidation is a process whi	ich involves :	S. Office	
	a) de-electronation	b) Electronation	c) Addition of hydrogen	d) Addition of metal
205.			1007	ne gives that an oxide of the
	metal is produced on heat		ů.	
	a) The statement and reas			
	b) The statement and reas			
	c) The statement is true b	THE THOUGHT IN THE PROPERTY OF		
	d) None of the above			
206.		ries that cannot be an oxidis	sing agent is :	
	a) H ₂ SO ₄	b) H ₂ S	c) SO ₂	d) H ₂ SO ₃
207	KMnO ₄ acts as indica		(f (100)	(f. (f.) (f.)
2.275.00				

a) Self	b) External	c) Internal	d) Not an
	zinc and iodine in which zinc		
a) Zinc ions	b) Iodide ions	c) Zinc atom	d) Iodine
209. The best oxidising ager		to 🗸) rest systematic telepolitik	00 € 00.000 500 500 500 500 500 500 500 500
a) Tellurium	b) Selenium	c) Sulphur	d) Oxygen
210. The oxidation state of	iron in sodium nitroprusside	is:	
a) +2	b) +1	c) Zero	d) +3
211. A compound of Xe and	F is found to have 53.3% Xe.	Oxidation number of Xe in	this compound is :
a) -4	b) Zero	c) +4	d) +6
212. Which combination is	odd with respect to oxidation	numbers of S, Cr, N and H r	respectively:
a) H ₂ SO ₅ , H ₂ S ₂ O ₈ , H ₂ S	_		
b) K ₂ Cr ₂ O ₇ , K ₂ CrO ₄ , Cr	O ₅ , CrO ₂ Cl ₂		
c) NH ₃ , NH ₄ ⁺ , N ₃ H, NO ₂ ⁻			
d) CaH2, NaH, LiH, MgH	I_2		
213. 0.2 g of a sample of H ₂ 0	O_2 required 10 mL of N KMnC	0_4 in a titration in the prese	nce of H_2SO_4 . Purity of H_2O_2
is:			
a) 25%	b) 85%	c) 65%	d) 95%
214. When KMnO ₄ as oxidi	sing agent and ultimately for	ms MnO_4^{2-} , Mn_2O_3 and Mn	²⁺ , the number of electrons
	f KMnO ₄ each case respective		
a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5
215. Titration of KI with H ₂	O ₂ in presence of acid is a :		
a) Clock reaction	b) Redox reaction	c) Intermolecular redox	d) All of these
216. Oxidation state of nitro	ogen is incorrectly given for:		
Compound	Oxidation state		
a) [Co(NH ₃) ₅ Cl]Cl ₂	-3		
b) NH ₂ OH	-1		
c) $(N_2H_5)_2SO_4$	+2		
d) Mg_3N_2	-3		
217. Fluorine exhibits only	-1 oxidation state, while iod	ine exhibits oxidation state	s of -1 , $+1$, $+3$, $+5$ and $+7$.
This is due to:			
 a) Fluorine being a gas 			
b) Available <i>d</i> -orbitals	in iodine		
c) Non-availability of a	∱orbitals in iodine		
d) None of the above			
218. Elements which genera	ally exhibit multiple oxidation	states and whose ions are	coloured are known as :
a) Metalloid	b) Non-metals	c) Metals	d) Transition metals
219. The oxidation state of	sulphur in sodium tetrathiona	ate $(Na_2S_4O_6)$ is	
a) 2	b) 0	c) 2.5	d) 3.5
220. Which is strongest oxid	dising agent?		
a) 0 ₃	b) 0 ₂	c) Cl ₂	d) F ₂
221. Sulphur has the highes	t oxidation state in :		
a) SO ₂	b) SO ₃	c) H ₂ SO ₃	d) H ₂ S
222. Nitrogen has fractiona	l oxidation number in :		
a) N_2H_4	b) NH ₄	c) HN ₃	d) N_2F_2
223. As the oxidation state i	for any metal increases, the te	endency to show ionic natu	re:
a) Decreases	b) Increases	c) Remains same	d) None of these
224. In acid medium Zn red	uces nitrate ion to NH4 ion a	ccording to the reaction	
$Zn + NO_3$ Zn^{2+}	$+ NH_4^+ + H_2O$ (unbalanced)		
How many moles of HO	Cl are required to teduce half	a mole of NaNO ₃ completel	y? Assume the availability
of sufficient Zn.			

a) 5	b) 4	c) 3	d) 2
225. Weight of FeSO ₄ (mol. wt	t = 152) oxidized by 200 m	1 L of 1 N KM 1 M 2 solution is	S:
a) 30.4 g	b) 15.2 g	c) 60.8 g	d) 158 g
226. In the ionic equation,			
$BiO_3^- + 6H^+ + xe^- \rightarrow I$	$Bi^{3+} + 3H_2O$		
The values of x is			
a) 6	b) 2	c) 4	d) 3
227. The reaction, $5H_2O_2 + X$	$ClO_2 + 2OH^- \rightarrow XCl^- + Y$	$O_2 + 6H_2O$ is balanced if:	
	b) $X = 2, Y = 5$		d) $X = 5, Y = 5$
228. What volume of 0.40 <i>M</i> N 50 mL of 0.20 <i>M</i> CuSO ₄ s		I to react with the I ₂ liberat	ted by adding excess of KI to
a) 12.5 mL	b) 25 mL	c) 50 mL	d) 2.5 mL
229. For the reaction, 2Fe ³⁺			
	7.5 g in acid solution and d	나 없어지 않는데 요요 점점 하는 것이 없는 것이 생각하는 것이 없는 그 기업이 되었다. 이번 바퀴에 그림	가능한 얼마 가는 얼마 없는 것이 없었다. 그는 그는 그는 그들은 사람들이 되었다. 그리고 하는 것이 없는 것이 없다면 하는데 없다면
a) 0.222 N	b) 0.111 <i>N</i>	c) $0.333 N$	d) 0.444 N
230. The eq.wt. of $Fe_2(SO_4)_3$,		A Section Commence	Angelia de la companya de la company
a) (Mol. wt.)/1	b) (Mol. wt.)/2	c) (Mol. wt.)/3	d) (Mol. wt.)/5
231. Oxalic acid on reacting w		VT 427	a) (Mol. W.)/3
a) CO and H ₂	b) CO ₂ and H ₂	c) CO ₂ and H ₂ O	d) CO and H ₂ O
232. The oxidation number of		A DESCRIPTION OF THE PROPERTY	a) co ana 1120
a) +2 and +7	b) +3 and +7	c) -3 and +5	d) $+2$ and -7
233. Sulphur in +3 oxidation	*	cj bana i b	a) 12 and 7
a) Sulphurous acid	5	c) Dithionous acid	d) Thiosulphuric acid
234. Among the properties (a			
ion towards metal specie		nd (c) complexing the sec	or properties shown by civ
a) a, b, c	b) b, c	c) c, a	d) a, b
235. Magnesium reacts with a	1. VI - VI		
magnesium undergoes :	acido producing ny drogen	and corresponding magnet	stati sates in sacii reactions
a) Oxidation			
b) Reduction			
c) Neither oxidation nor	reduction		
d) Simple dissolution			
236. What volume of 0.1 N o	xalic acid solution can be	reduced by 250 g of an 8	per cent by weight KMnO ₄
solution?		, ,	. , , , ,
a) 6.3 litre	b) 12.6 litre	c) 25.2 litre	d) 0.63 litre
237. The oxidation state of +3			
a) Hypophosphorous aci			
b) Meta-phosphoric acid			
c) Ortho-phosphoric acid			
d) Phosphorous acid			
238. When SO ₂ is passed throu	ugh acidified solution of pot	assium dichromate, then cl	hromium sulphate is formed.
The change in oxidation	rang rangkating ang a at a til palikan manang bahili na manakitan a parang		
a) +4 to +2	b) +5 to +3	c) $+6$ to $+3$	d) $+7$ to $+2$
239. Oxidation no. of P in H ₄ P ₂			
a) +3, +5, +4	b) +4, +3, +5	c) +3, +4, +5	d) +5, +3, +4
240. Oxidation of thiosulphate		15 (A) (A)	MCS
a) SO ₃	b) SO ₄ ²⁻	c) S ₄ O ₆ ²⁻	d) $S_2O_8^{2-}$
241. 0.3 g of an oxalate salt w			
	% of oxalate ion in salt is:	The boladion require	
a) 33%	b) 66%	c) 70%	d) 40%
-, "	-,,,	-3	-,,,,,,,,,,

242. How many litre of Cl ₂ at STP will be liberat	red by the oxidation of NaCl with 10 g KMnO ₄ ?
a) 3.54 litre b) 7.08 litre	c) 1.77 litre d) None of these
243. What is the normality of a KMnO ₄ solution	to be used as an oxidant in acid medium, which contain 15.8 g of
the compound in 100 mL of solution? Mol.	wt. of KMnO ₄ is 158:
a) 2 N b) 3 N	c) 4 N d) 5 N
244. KMnO ₄ in acid medium is always reduced t	to:
a) Mn ⁴⁺ b) Mn ²⁺	c) Mn ⁶⁺ d) Mn
245. In balancing the half reaction, $S_2O_3^{2-} \rightarrow S($	s), the number of electrons that must be added is :
a) 2 on the right b) 2 on the left	c) 3 on the right d) 4 on the left
246. What volume of 0.1 M KMnO ₄ is needed to	oxidise 100 mg of FeC ₂ O ₄ in acidic solution?
a) 4.1 mL b) 8.2 mL	c) 10.2 mL d) 4.6 mL
247. Which one is not a redox titration?	
a) FeSO ₄ vs. K ₂ Cr ₂ O ₇ b) CuSO ₄ vs. hyp	"이용함 6
2-1-1	ed in HCl and then the calcium is precipitated as CaC ₂ O ₄ . After
	quires 40.0 mL of 0.250 N KMnO ₄ , solution acidified with H ₂ SO ₄
	$n^{2+} + CO_2 + 2H_2O$. The percentage of CaO in the sample is :
a) 54.0 % b) 27.1 %	c) 42% d) 84%
249. The missing term in following equation is :	
a) Sn^{4+} b) Sn^{2+}	c) Sn d) None of these
	olution gives sodium bromide and sodium bromate with
	m bromide molecules involved in the balanced chemical
equation is	
a) 1 b) 3	c) 5 d) 7
251. Oxidation number of carbon in C ₃ O ₂ , Mg ₂ C	
a) $-4/3$, $+4/3$ b) $+4/3$, $-4/3$	c) $-2/3$, $+2/3$ d) $-2/3$, $+4/3$
252. The reaction; $KI + I_2 \rightarrow KI_3$ shows:	
a) Oxidation b) Reduction	c) Complex formation d) All of these
253. The oxidation state of Cr in chromium trio	
a) +3 b) +4	c) +5 d) +6
254. Oxidation number of S in S_2Cl_2 is:	37
a) +1 b) +6	c) Zero d) -1
255. In which of the following N has lowest oxid	
a) NO b) NO ₂	c) N ₂ O d) N ₂ O ₅
KMnO ₄ . The ration $f'X'$ and Y' is:	of KMnO ₄ whereas 2 mole of FeC ₂ O ₄ are oxidized by 'Y'mole of
a) 1:3 b) 1:2	c) 1:4 d) 1:5
	c) 1.4 u) 1.5
257. H ₂ S reacts with halogens, the halogens : a) Are oxidised b) Are reduced	c) Form sulphur halides d) None of these
	of a salt reacted with 25 mL of 0.1 <i>M</i> solution of sodium sulphite.
The half equation for the oxidation of sulph	하는데 가는데 함께 하는데
$SO_3^{2-}(aq) + H_2O(l) \rightarrow SO_4^{2-}(aq) + 2H^+(aq)$	
	was 3, what would be the new oxidation number of metal?
a) Zero b) 1	c) 2 d) 4
259. The most stable oxidation state of copper i	
a) +2 b) +1	c) +3 d) +4
	the products are PH ₃ and NaH ₂ PO ₂ . This reaction is an
example of	, see p. saaro are r. 1.3 and raingree 2. rino reaction to an
a) Oxidation b) Reduction	c) Disproportionation d) Neutralisation
261. When a sulphur atom becomes a sulphide	
a) It gains two electrons	

	o) The mass number char c) There is no change in t			
	d) None of the above	ne composition of atom		
	18 1 1 1 1 1 1 1	of titrant used for a definite	e amount of unknown reag	ent at its :
	a) Equivalence point	b) End point	c) Neutralization point	d) All of these
			tively. Formula of the comp	
	oe		,	, , , , , , , , , , , , , , , , , , ,
2	a) X_2YZ_6	b) XY_2Z_6	c) XY ₅	d) X_3YZ_4
	5000 00 Table 1000	en has an oxidation state o		7 3 4
	a) H ₂ O ₂	b) H ₂ O	c) OF ₂	d) CO
265. I	f equal volumes of 1M	KMnO ₄ and 1 M K ₂ Cr ₂ O ₇	solutions are allowed to o	oxidise F ²⁺ to F ³⁺ in acidi
		nt required for one mole of		
ä	a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$			
ł	$V_{\rm KMnO_4} < V_{\rm K_2Cr_2O_7}$			
	$V_{KMnO_4} = V_{K_2Cr_2O_7}$			
	d) Nothing can be predict	ed		
	- 10 m -		up 250 mL of a solution o	f such strength that 1 mL is
	equivalent to 5.0 mg of Fe	- 17	•	
	a) 1.414 g	b) 0.70 g	c) 3.16 g	d) 1.58 g
	Γhe oxidation number of			
	a) +3	b) -6	c) +6	d) -3
268. I	n the reaction, 2Na ₂ S ₂ O ₃	$+ I_2 \rightarrow Na_2S_4O_6 + 2NaI_6$	the oxidation state of sulph	ur is :
	a) Decreased	b) Increased	c) Unchanged	d) None of these
269.7	The equivalent weight of	KMnO ₄ (acidic medium) is	(at. wt. of $K = 39$; $Mn = 55$):
ā	a) 158	b) 15.8	c) 31.6	d) 3.16
270.	The oxidation number of	chromium in potassium di	chromate is	
ä	a) +2	b) +4	c) +6	d) +8
271.7	Γhe equivalent weight of	MnSO ₄ is half of its molecu	lar weight when it is conve	rted to :
	a) Mn_2O_3	b) MnO ₂	c) MnO ₄	d) Mn ₄ ²⁻
272.	Aqueous solution of SO ₂ r	가 하는 것이 말했다. 이 없는 것이 없는 것이 없는 것이 되어 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이다. 그런데 없는 것이 없는 것이 없는 것이다. 그런데 없는 것이 없는 	ite sulphur. Here SO ₂ acts a	s:
	a) Catalyst	b) Reducing agent	c) Oxidizing agent	d) Acid
	Saline hydrides are :			
	a) Strong oxidants			
	o) Strong reductants			
	c) Strong dehydrating age			
	d) Strong bleaching agent			7 7
			ethanal and methanoic acid	
	a) 0 and 0	b) 0 and +2	c) +1 and +2	d) +1 and +3
	The eq. wt. of I_2 in the cha		25.4	J) 2.54
	a) 12.7 Faviralent mass of avidia	b) 63.5	c) 25.4	d) 2.54
	Equivalent mass of oxidiz $5O_2 + 2H_2S \rightarrow 3S + 2H_2$	ing agent in the reaction is	•	
	a) 32	b) 64	c) 16	d) 8
		uctant and oxidant, the red	,	u) o
	a) Lower ox.no.	b) Higher ox.no.	c) Same ox.no.	d) Either of these
	: Til	reactions, hydrogen is acti		u) Littlei of these
	a) With Li to form LiH	b) With I ₂ to give HI	c) With S to give H ₂ S	d) None of the above
		Nohr's salt required per mo		a) None of the above
	a) 3	b) 4	c) 5	d) 6
			of faraday of electricity is :	and distant
		Ma	,	

a) 2	b) 1	c) 1.5	d) 4
281. $Co(s) + Cu^{2+}(aq)$	\rightarrow Co ²⁺ (aq) + Cu(s). This real	action is :	
 a) Oxidation reaction 	n b) Reduction reaction	c) Redox reaction	d) None of these
282. The oxidation state	of I in $H_4IO_6^-$ is:		
a) +7	b) -1	c) +5	d) +1
283. The oxidation numb	er of N in NH ₃ is:		
a) -3	b) +3	c) Zero	d) 5
284. Mn ²⁺ can be conver	ted into Mn ⁷⁺ by reacting wit	th	
a) SO ₂	b) Cl ₂	c) PbO ₂	d) SnCl ₂
285. The oxidation numb	er of Ni in K ₄ [Ni(CN) ₄] is:		
a) +1	b) +2	c) -1	d) 0
286. Which change occur	when lead monoxide is conv	erted into lead nitrate?	
a) Oxidation			
b) Reduction			
c) Neither oxidation	nor reduction		
d) Both oxidation ar	id reduction		
287. How many mole of	electron are involved in the i	reduction of one mole of M	InO_4^- ion in alkaline medium to
MnO ₃ ?			
a) 2	b) 1	c) 3	d) 4
288. The oxidation numb	er of Fe in K_4 Fe(CN) ₆ is:		
a) +2	b) +3	c) +4	d) +6
289. For the reaction, NH	$_3 + OCl^- \rightarrow N_2H_4 + Cl^-$		
occurring in basic m	edium, the coefficient of N ₂ H	4 in the balanced equation	will be
a) 1	b) 2	c) 3	d) 4
290. In the reaction $\rm H_2O$	$+ H_2O_2 \rightarrow S + 2H_2O$		
a) H ₂ S is an acid and	$1 H_2 O_2$ is a base		
b) H ₂ S is a base and	H ₂ O ₂ is an acid		
c) H ₂ S is an oxidisin	g agent and H_2O_2 is a reducing	ng agent	
d) H ₂ S is a reducing	agent and H_2O_2 is an oxidising	ng agent	
	verted into H_2SO_4 the change	in the oxidation state of su	lphur is from:
a) $0 \text{ to } +2$	b) $+2$ to $+4$	c) $+4$ to $+2$	d) $+4$ to $+6$
292. The oxidation numb	er of nitrogen in NH ₂ OH is :		
a) +1	b) -1	c) -3	d) -2
293. In the reaction, 2C	$uSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2S$	$SO_4 + I_2$ The ratio of equi	valent weight of CuSO ₄ to its
molecular weight is	•		
a) 1/8	b) 1/4	c) 1/2	d) 1
	reen acidified $K_2Cr_2O_7$ and ire		quation: $\operatorname{Cr}_2\operatorname{O}_7^{2-}(aq)$ +
$6 \text{Fe}^{2+}(aq) + 14 \text{H}^{+}$	$(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$	$() + 6 \text{Fe}^{3+}(aq)$	
 a) The colour of the 	solution changes from green	to blue	
b) The iron (II) ions	are reduced		
c) The dichromate i			
d) Hydrogen ions ar			121
295. Which is the reducir	ng agent in the reaction, 8H+	$+4NO_3^- + 6Cl^- + Sn(s) -$	\rightarrow SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
a) Sn(s)	b) Cl ⁻	c) NO ₃	d) NO ₂ (g)
296. Which is a redox rea	action?		
a) $H_2SO_4 + 2NaOH$			
b) $BaCl_2 + H_2SO_4 -$			
150 Jan 150 Ja	$_5OH \rightarrow CH_3COOC_2H_5 + H_2O$		
d) $2FeCl_3 + SnCl_2$ -		SUP COURS TO THE COMMENT OF THE COME	
297. Which one of the fol	lowing reactions involves dis	proportionation?	

a) $2H_2SO_4 + Cu$ $CuSO_4 + 2H_2O + SO_2$ b) $As_2O_3 + 3H_2S$ $As_2S_3 + 3H_2O$ c) $2KOH + Cl_2$ $KCl + KOCl + H_2O$ d) $Ca_3P_2 + 6H_2O$ $3Ca(OH)_2 + 2PH_3$ 298. The oxidation state of chromium in the final product formed by the reaction between KI and acidified potassium dichromate solution is c) + 6d) + 4299. Which of the following acts as an oxidising as well as reducing agent? a) Na₂O b) Na_2O_2 c) NaNO₃ d) NaNO₂ 300. Oxidation state of carbon in graphite is: a) Zero b) +1c) + 4d) + 2301. Which compound has oxidation number of carbon equal to zero? b) CH₃ a) C_6H_6 d) $C_6H_{12}O_6$ 302. In the reaction, 2KMnO $_4$ + 16HCl $\,\longrightarrow$ 2KCl + 2MnCl $_2$ + 8H $_2$ O + 5Cl $_2$, the reduction product is : c) KCl b) MnCl₂ d) H20 303. The oxidation number of phosphorus in $Mg_2P_2O_7$ is: d) - 7b) -5c) + 6304. 1 mole of chlorine combines with a certain weight of a metal giving 111 g of its chloride. The atomic weight of the metal (assuming its valency to be 2) is: d) None of these b) 20 c) 80 305. Oxidation state of chromium 306. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are a) II, III in haematite and III in magnetite b) II, III in haematite and II in magnetite d) III in haematite and II, III in magnetite c) II in haematite and II, III in magnetite 307. The colour of $K_2Cr_2O_7$ changes from red-orange to lemon-yellow on treatment with KOH(aq) because of: a) Reduction of Cr(VI) to Cr(III) b) Formation of chromium hydroxide c) Conversion of dichromate into chromate ion d) Oxidation of potassium hydroxide to potassium peroxide 308. How many electrons are involved in oxidation of KMnO₄ in basic medium? a) 1 b) 2 c) 5 d) 3 309. The oxidation state of nitrogen in NH₄NO₃ is: d) + 3a) -3 and +5b) +3 and +5c) + 5310. When Sn(IV) chloride is treated with excess HCl, the complex [SnCl₆]²⁻ is formed. The oxidation state of Sn in this complex is: a) + 6b) -2d) -5c) + 4311. Oxidation number of chlorine in HOCl is: d) + 2c) + 1312. In the reaction, C + 4HNO $_3 \rightarrow CO_2 + 2H_2O + 4NO_2$, HNO $_3$ acts as : a) An oxidising agent b) An acid c) An acid as well as oxidising agent d) A reducing agent 313. Change of hydrogen into proton is: a) Oxidation of hydrogen b) Acid-base reaction

,	ogen		
d) Displacement react	tion		
314.8 g of sulphur are bu	irnt to form SO_2 which is	oxidised by Cl2 water. Th	e solution is treated with BaCl ₂
solution. The amount	of BaSO ₄ precipitated is:		
a) 1.0 mole	b) 0.5 mole	c) 0.24 mole	d) 0.25 mole
315. The number of mole of	of ferrous oxalate oxidised	by one mole of KMnO ₄ is:	
a) 1/5	b) 3/5	c) 2/3	d) 5/3
316. Reactants react in the	equal number of to g	give products.	<i>5</i> 7. 1
a) Mole	b) Weights	c) Equivalent	d) All of these
			ced stoichiometric equation.
a) Molar ratio	b) Equal amount	c) Both (a) and (b)	
			along with another phosphorus
	. 1471 1771		orus in phosphine and the other
product are respectiv		, and the second	and in proof.
a) Redox reaction; -3	50 man 190 mm		
b) Redox reaction; +3			
c) Disproportionation			
d) Disproportionation			
319. Which can act only as			
a) Oxygen	b) Fluorine	c) Iodine	d) H_2O_2
		2007 C	of NH_3 and N_2 respectively, then
$E_1 - E_2$ is:	$+311_2 \rightarrow 21111_3$, if L_1 and	L ₂ are equivalent masses	of WH3 and W2 respectively, then
$E_1 - E_2$ is . a) 1	b) 2	c) 3	d) 4
		c) s	u) 4
321. Bleaching action of SC		a) Hudualusia	d) Asidia natura
a) Reduction	b) Oxidation	c) Hydrolysis	d) Acidic nature
322. $\ln N_2 + 2H_2O \rightarrow NH_1$		a) Both (a) and (b)	d) None of these
a) Oxidised	b) Reduced	c) Both (a) and (b)	d) None of these
323. If three electrons are			
a) Zero	b) +6	c) +2	d) +4
324. In the reaction, NaH +	$-H_2O \rightarrow NaOH + H_2$:		
a) H ⁻ is oxidised			
b) Na ⁺ is reduced	COSCOS ACADOMAN SE PROPRIATOR		
c) Both NaH and H ₂ O	are reduced		
d) None of the above			
	g acts as an oxidizing agen		
a) HNO ₃	b) Cl ₂	c) FeCl ₃	d) All of these
a) $\rm HNO_3$ 326. How many gram of $\rm I_2$	b) Cl ₂ are present in a solution	c) FeCl ₃	d) All of these $0.11 N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
a) HNO ₃ 326. How many gram of I_2 $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$	b) Cl ₂ are present in a solution + 2I ⁻ ?	c) $FeCl_3$ which requires 40 mL, of	$0.11 N Na_2S_2O_3$ to react with it,
a) HNO ₃ 326. How many gram of I_2 $S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-}$ a) 12.7 g	b) Cl ₂ are present in a solution + 2I ⁻ ? b) 0.558 g	c) $FeCl_3$ which requires 40 mL, of c) 25.4 g	0.11 N $Na_2S_2O_3$ to react with it, d) 11.4 g
a) HNO ₃ 326. How many gram of I_2 $S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-}$ a) 12.7 g	b) Cl ₂ are present in a solution + 2I ⁻ ? b) 0.558 g	c) $FeCl_3$ which requires 40 mL, of c) 25.4 g	$0.11 N Na_2S_2O_3$ to react with it,
a) HNO ₃ 326. How many gram of I_2 $S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-}$ a) 12.7 g	b) Cl ₂ are present in a solution + 2I ⁻ ? b) 0.558 g	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole	0.11 N $Na_2S_2O_3$ to react with it, d) 11.4 g
a) HNO ₃ 326. How many gram of I_2 $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g 327. The number of mole of	b) Cl ₂ are present in a solution + 2I ⁻ ? b) 0.558 g	c) $FeCl_3$ which requires 40 mL, of c) 25.4 g	0.11 N $Na_2S_2O_3$ to react with it, d) 11.4 g
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5	b) Cl ₂ gare present in a solution + 2I ⁻ ? b) 0.558 g of KMnO ₄ that will be need b) 3/5	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5 $328. \text{ What weight of HNO}_3$	b) Cl ₂ gare present in a solution + 2I ⁻ ? b) 0.558 g of KMnO ₄ that will be need b) 3/5	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5 re of 2 N solution to be us	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5 $328. \text{ What weight of HNO}_3$	b) Cl ₂ are present in a solution + 2I ⁻ ? b) 0.558 g of KMnO ₄ that will be need b) 3/5 a is required to make 1 lit	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5 re of 2 N solution to be us	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1
a) HNO_3 326. How many gram of I_2 $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-}$ a) 12.7 g 327. The number of mole of is: a) 2/5 328. What weight of HNO_3 reaction? $3\text{Cu} + 8\text{HNO}_3$	b) Cl_2 g are present in a solution $+2I^-$? b) $0.558 g$ of KMnO ₄ that will be need b) $3/5$ g is required to make 1 little $C_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 1$ b) $21 g$	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5 re of 2 N solution to be us 4H ₂ O c) 42 g	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1 sed as an oxidising agent in the
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5 $328. \text{ What weight of HNO}_3$ $\text{reaction? } 3\text{Cu} + 8\text{HNO}_3$ a) 63 g	b) Cl_2 g are present in a solution $+2I^-$? b) $0.558 g$ of KMnO ₄ that will be need b) $3/5$ g is required to make 1 little $C_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 1$ b) $21 g$	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5 re of 2 N solution to be us 4H ₂ O c) 42 g	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1 sed as an oxidising agent in the
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5 $328. \text{ What weight of HNO}_3$ $\text{reaction? } 3\text{Cu} + 8\text{HNO}_3$ a) 63 g $329. \text{ The oxidation state of } 3\text{Cu}$	b) Cl_2 g are present in a solution $+2I^-$? b) $0.558 \mathrm{g}$ of $KMnO_4$ that will be need b) $3/5$ g is required to make 1 lit. $O_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 10$ b) $21 \mathrm{g}$ f two sulphur atoms in H_2S b) -2	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) $4/5$ re of 2 N solution to be us $4 + 4 + 4 + 2 + 0$ c) $4 + 2 + 6$ $4 + 6$	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1 sed as an oxidising agent in the d) 84 g
a) HNO ₃ $326. \text{ How many gram of } I_2$ $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-}$ a) 12.7 g $327. \text{ The number of mole of is:}$ a) 2/5 $328. \text{ What weight of HNO}_3$ $\text{reaction? 3Cu} + 8\text{HNO}_3$ a) 63 g $329. \text{ The oxidation state of a} -6$	b) Cl_2 g are present in a solution $+2I^-$? b) $0.558 \mathrm{g}$ of $KMnO_4$ that will be need b) $3/5$ g is required to make 1 lit. $O_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 10$ b) $21 \mathrm{g}$ f two sulphur atoms in H_2S b) -2	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) $4/5$ re of 2 N solution to be us $4 + 4 + 4 + 2 + 0$ c) $4 + 2 + 6$ $4 + 6$	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1 sed as an oxidising agent in the d) 84 g
a) HNO ₃ 326. How many gram of I ₂ S ₂ O ₃ ²⁻ + I ₂ → S ₄ O ₆ ²⁻ a) 12.7 g 327. The number of mole of is: a) 2/5 328. What weight of HNO ₃ reaction? 3Cu + 8HNO a) 63 g 329. The oxidation state of a) −6 330. In a conjugate pair of a) Higher ox.no.	b) Cl_2 are present in a solution $+2I^-$? b) $0.558 g$ of $KMnO_4$ that will be need b) $3/5$ a is required to make 1 lit. $O_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 6$ b) $21 g$ f two sulphur atoms in H_2S b) -2 reductant and oxidant, the b) Lower ox.no.	c) FeCl ₃ which requires 40 mL, of c) 25.4 g ded to react with one mole c) 4/5 re of 2 N solution to be us 4 4H ₂ O c) 42 g S ₂ O ₈ c) +6 e oxidant has: c) Same ox.no.	0.11 N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g of sulphite ion in acidic solution d) 1 sed as an oxidising agent in the d) 84 g d) -4

a) 17	b) 34	c) 68	d) 18
332. In which transfer of	f five electrons takes place?		
a) $MnO_4^- \rightarrow Mn^{2+}$	b) $CrO_4^{2-} \rightarrow Cr^{3+}$	c) $MNO_4^- \rightarrow MnO_2$	d) $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$
333. Oxidation number	of nitrogen is highest in		
a) N ₃ H	b) N ₂ O ₄	c) NH ₂ OH	d) NH ₃
334. Starch gives blue co	olour with :		
a) KI	b) I ₂	c) Cl ₂	d) None of these
335. The number of mo	le of potassium salt, i.e, KHC ₂ C	O_4 . $H_2C_2O_4$.2 H_2O oxidised b	y one mole of permanganate
ion is:			
a) 2/5	b) 4/5	c) 1	d) 5/4
336. When an acidified	solution of ferrous ammonium	sulphate is treated with KM	nO ₄ solution, the ion which is
oxidised is:			
a) Fe ²⁺	b) SO ₄ ²⁻	c) NH ₄ ⁺	d) MnO ₄
337. Oxidation number	of N in N ₃ H is:		
a) -3	b) +3	c) Zero	d) $-1/3$
338. Hydrogen peroxide	e in aqueous solution decompos	ses on warming to give oxyg	en according to the equation,
$2H_2O_2(aq) \rightarrow 2H$	$_{2}O(l) + O_{2}(g)$ under conditions	s where one mole of gas occ	upies 24 dm^3 , $100 \text{ cm}^3 \text{ of } XM$
	roduces 3 dm ³ of O_2 . Thus, X is		epot. SAD
a) 2.5	b) 1	c) 0.5	d) 0.25
339. CuSO ₄ and KI on m	ixing gives :		
	b) $Cu_2I_2 + K_2SO_4$	c) $Cu_2I_2 + K_2SO_4 + I_2$	d) $CuI_2 + K_2SO_4 + I_2$
340. Which metal exhib	its more than one oxidation sta	tes?	
a) Na	b) Mg	c) Al	d) Fe
341. Which of the follow	ving oxidation state is the most	common among the lanthar	noides :
a) 4	b) 2	c) 5	d) 3
342. 13.5 g aluminium o	hanges to Al ³⁺ in solution by lo	osing:	
a) 18×10^{23} elect	S777	原 级	
b) 6.023×10^{23} el	lectrons		
c) 3.01×10^{23} ele	ctrons		
d) 9 \times 10 ²³ electr			
343. In CH ₂ Cl ₂ , the oxid	ation number of C is :		
a) -4	b) +2	c) Zero	d) +4
	KMnO ₄ and K ₂ Cr ₂ O ₇ , the highe	st oxidation state is of the el	ement
a) Mn	b) K	c) 0	d) Cr
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e of nitrogen varies from :	400 4 (1000)	Charles a trade of
a) -3 to $+5$	b) 0 to +5	c) -3 to 1	d) $+3$ to $+5$
346. The oxidation state	e of hydrogen in CaH ₂ is :	ő.	
a) +1	b) -1	c) Zero	d) +2
	oxidation state of an element		200 (00 00 00 00 00 00 00 00 00 00 00 00
shell is:			
a) 2	b) 4	c) 6	d) 8
	ust possess the following chara	5	
a) The colour chan			
b) The colour chan			
	tive to the equivalent point		
d) All of the above	gar (1 metrika eta sikilarrakoka) eta oleria (a. metrikakoka mueta eta eta era (a. 1 koka 1 dakoka) eta (a. 1		
	nber of Xe in XeF ₄ and XeO ₂ is		
a) +6	b) +4	c) +1	d) +3
7,7%	ber of arsenic in arsenate is :	18	## (T)
a) +5	b) +4	c) +6	d) +2
1620 46 1637308	estados destados	30 .4 / 37 - 35	and While

351. The reaction,			
$Ag^{+2}(aq) + Ag(s)$	$) \rightleftharpoons 2Ag'(aq)$		
is an example of	120.11.1	3.57	5.45
a) Reduction	b) Oxidation	c) Disproportionation	d) None of these
		re, on addition of dil. H ₂ SO ₄ , o	ne notice that:
a) SO ₂ and H ₂ S ar	e not formed		
b) SO_2 and H_2S for	rmed during change undergoe	es a redox change forming coll	oidal sulphur and thus, no
smeii			
c) A smell of burn			
d) A smell of rotte			
353. Which is not an ox	16.70 Sept	2611.0	D. V. C O
a) KClO ₃	b) 0 ₂	c) $C_6H_{12}O_6$	d) $K_2Cr_2O_7$
354. The charge on cob		-) 2	D 16
a) -6	b) +3	c) -3	d) +6
a) + 5	xidation state of chromium is : b) + 3	: c) + 2	d) + 4
	ving as increase in oxidation n		u) + 4
	i) MnO ₂	lumber	
(iii) KMnO ₄ (iv	19 P. C.		
	"[[[마다"=""""""""""""""""""""""""""""""""	c) (ii)<(iii)<(i)<(iv)	d) (iii)>(i)>(iv)>(ii)
		6 N oxalic acid in acidic soluti	
	$C_2O_4 \rightarrow CO_2 + H_2O + Mn^{2+}$:		on. The skeleton equation is,
a) 8.7 g	b) 0.24 g	c) 0.84 g	d) 43.5 g
358. Stronger is oxidisi		c) 0.01g	u) 13.3 g
- programme of the first of the second for a second first of the second for a second first of the second f	ction potential of that species		
	o get itself oxidised		
57	o lose electrons by that specie	S	
574	tion potential of that species		
	사람들이 많아 아이들이 아니는 아이들이 아니는 아이를 하는데 하는데 아니는 아니는 아이를 보고 있다.	75 litre of 0.850 N solution if I	$\langle MnO_4 \rangle$ is reduced as, $MnO_4 +$
$8H^+ + 5e \rightarrow Mn$			en betre i delegio (■ compositione de la composit
a) 101 g	b) 202 g	c) 50.5 g	d) 303.0 g KMnO ₄
		l medium, the oxidation numb	
a) +7 to +4	b) $+6$ to $+4$	c) $+7$ to $+2$	d) +4 to +2
361. Addition of zinc p	owder to CuSO ₄ solution preci	ipitates copper due to :	
a) Reduction of Cu	a^{2+} b) Reduction of SO_4^{2-}	c) Reduction of Zn	d) Hydrolysis of CuSO ₄
362. Titrations in whi	ch liberated I2 is estimated	to carry out the volumetric	estimations are known as
titrations.			
a) Iodometric	b) Iodimetric	c) Acidimetric	d) Alkalimetric
363. In the course of ch	nemical reaction, an oxidant :		
 a) Loses electron 		c) Either of these	d) None of these
364. In alkaline conditi	on KMnO ₄ reacts as follows :		
$2KMnO_4 + 2KOH$	\rightarrow 2K ₂ MnO ₄ + H ₂ O + O. The	e eq. wt. of KMnO ₄ is :	
a) 52.7	b) 158	c) 31.6	d) 79
	r of nitrogen in AgNO ₃ is:		
a) +5	b) -3	c) +3	d) -2
		AlF_3 containing 3.01×10^{23} is	
a) 9×10^{24}	b) 3×10^{24}	c) 7×10^{23}	d) 10 ²³
367. Oxidation number		G 10 P	
a) +3	b) +2	c) +1	d) +4
368. The oxidation stat	te of chlorine is highest in the	compound :	

2 01		12.1101	3 01 0			13 01 0
a) Cl ₂		b) HCl	c) Cl ₂ O			d) Cl ₂ O ₇
		10_4 are contained in 4 litre of	of 0.05 N solut	ion? Th	e KMn	O_4 is to be used as an oxidant
in acidic me	dium :	11122	2 0 22			
a) 1.58 g		b) 15.8 g	c) 6.32 g			d) 31.6 g
		$0_2 \rightarrow 2H_2O + S \text{ shows}$:				
a) Acidic na	107					
b) Alkaline		V77				
c) Oxidising						
d) Reducing		202				
371. For redox re		보았.				
$MnO_4^- + C_2$	$0_4^{2-} + H^+ -$	$\rightarrow Mn^{2+} + CO_2 + H_2O$				
		in balanced states are				
MnO_4^- C						
a) 2	5 16		b) 16	5	2	
c) 5	16 2		d) 2	16	5	
372. Chlorine ha	s +1 oxidati	ion state in :				
a) HCl		b) HClO ₃	c) Cl ₂ O			d) ICl ₃
373. Which state	ment is inco	orrect?				
a) Oxidation	ı of a substa	nce is followed by reduction	n of another			
b) Reductio	n of a substa	ance is followed by oxidatio	n of another			
c) Oxidation	and reduct	tion are complementary rea	ctions			
d) It is not r	ecessary th	at both oxidation and reduc	tion should ta	ake plac	e in th	e same reaction
374. In the stand	ardization o	of $Na_2S_2O_3$ using $K_2Cr_2O_7$ b	y iodometry,	the equi	ivalen	t weight of $K_2Cr_2O_7$ is :
a) (molecul	ar weight)/	2				
b) (molecul	ar weight)/	6				
c) (molecul	ar weight)/	3				
d) Same as	molecular v	veight				
375. When SO ₂ is	passed in a	a solution of potassium ioda	te, the oxidati	ion state	e of io	dine changes from :
a) $+5$ to 0		b) $+5$ to -1	c) -5 to 0			d) -7 to -1
376. The haloger	that shows	same oxidation state in all	its compound	ls with o	other e	elements is:
a) I ₂		b) F ₂	c) Cl ₂			d) Br ₂
377. The reaction	1,					
$P_4 + 3NaOH$	$+3H_20$ —	\rightarrow 3NaH ₂ PO ₂ + PH ₃				
is an examp	le of					
a) Dispropo	rtionation r	eaction	b) Neutrali	sation r	eactio	on
c) Double-d	ecompositi	on reaction	d) Pyrolyti	c reactio	on	
378. Titrations in	which I2 so	olution is used as intermedi	ate are know	n asti	tratio	ns.
a) Iodometi		b) Iodimetric	c) Acidime			d) alkalimetric
379. In the react	on,Cr ₂ O ₇ ²⁻	$+ 14H^{+} + 6I^{-} \rightarrow 2Cr^{3+} + 7$	$7H_2O + 3I_2$, w	vhich ele	ement	is reduced?
a) I		b) 0	c) H			d) Cr
380. Carbon read	ts with oxy	gen to form two oxides, CO a	and CO ₂ . This	is becau	ıse :	
a) Carbon h	as two crys	talline forms				
b) Carbon h	as two oxid	ation states				
c) Oxygen d	onates as w	ell as accept electrons				
d) Oxygen h	as a strong	affinity for carbon				
381. How many	nilliliter of	$0.5 N SnCl_2$ solution will red	luce 600 mL c	of 0.1 N	HgCl ₂	to Hg ₂ Cl ₂ ?
a) 120 mL		b) 60 mL	c) 30 mL			d) 240 mL
382. What weight solution?	t of FeSO ₄	(mol. wt. =152) will be ox	dised by 20	0 mL of	norn	nal KMnO ₄ solution in acidic
a) 30.4 g		b) 60.8 g	c) 121.6 g			d) 15.8 g
0.420 (3.420)		0.534 SEQ.				9670 SUES

383. How many milligram of i	ron (Fe ²⁺) are equal to 1 m	nL of 0.1055 N K ₂ Cr ₂ O ₇ equ	iivalent?
a) 5.9 mg	b) 0.59 mg	c) 59 mg	d) $59 \times 10^{-3} \mathrm{mg}$
384. Number of moles of MnO			
be:		a ya watanin 1995 wasan a sakan an manaya ka tanaya ka ta a sakan in ka ka saka in a sakan in a saka wata a sa	♥ 0000 = 0.9 to +0. • ♥ = 0.0 to 5 = 0.0 to 5 to
a) 0.4 mole	b) 7.5 mole	c) 0.2 mole	d) 0.6 mole
385. A, B and C are three elem	ents forming a part of comp	oound in oxidation states of	+2, $+5$ and -2 respectively.
What could be the compo			// T. #F
a) $A_2(BC)_2$	b) $A_2(BC_4)_3$	c) $A_3(BC_4)_2$	d) ABC
386. In an oxidation process for	or a cell $M_1 \rightarrow M_1^{n+} + ne$, t	he other metal (M_2) being	univalent showing reduction
takes up theelectrons	to complete redox reaction	i.	
a) $(n-1)$	b) 1	c) n	d) 2
387. In which of the following	reactions, chlorine acts as	an oxidising agent?	
(i) $CH_3CH_2OH + Cl_2$			
	$CCl_3CHO + HCl$		
$(iii)CH_4 + Cl_2$	$CH_3Cl + HCl$		
The correct answer is			
a) (i) only			
b) (ii) only			
c) (i) and (iii)			
d) (i),(ii) and (iii)			
388. During a redox change, the a) Cr ⁵⁺	b) Cr ⁴⁺	c) Cr ³⁺	d) Cr ²⁺
389. When potassium perman	2	,	
potassium permanganate	AND A CONTRACTOR OF THE STATE O	terrous ammonium surpha	ite, the equivalent weight of
a) Molecular weight/10		c) Molecular weight/2	d) Molecular weight
390. Which conversion is an o		o)	a) riviouniii rivigiii
a) $SO_4^{2-} \rightarrow SO_3^{2-}$		c) $H^+ \rightarrow H$	d) $H^- \rightarrow H$
391. In which case +1 oxidation	1-7-X		
a) Ga	b) Al	c) Tl	d) B
392. In the reduction of dichro	omate by Fe(II), the numbe	r of electrons involved per	chromium atom is:
a) 3	b) 1	c) 2	d) 4
393. When K ₂ Cr ₂ O ₇ is conver	ted into K_2CrO_4 , the change	e in oxidation number of ch	romium is
a) 0	b) 5	c) 7	d) 9
394. Which of the following ac	cts as both an oxidizing as v	vell as reducing agent?	
a) HNO ₃	b) HNO ₂	c) HI	d) H_2SO_4
395. In which of the following		1.5	
a) N ₃ H	b) NH ₂ OH	c) N ₂ H ₄	d) NH ₃
396. 1 mole of MnO_4^{2-} in neutr		portionates to :	
a) $\frac{2}{3}$ mole of MnO ₄ and $\frac{1}{3}$ r	mole of MnO ₂		
b) $\frac{1}{3}$ mole of MnO ₄ and $\frac{2}{3}$ r	nole of MnO ₂		
c) $\frac{1}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$			
d) $\frac{2}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$	mole of MnO ₂		
397. Which one of the compou		an acidified solution of KMr	nO_4 ?
a) SO ₂	b) FeCl ₃	c) H ₂ O ₂	d) FeSO ₄
398. When one mole of KMnO	· 프로젝트 및 사용 및 기업 시간 기업 전 기업 및 기업		
a) 11.2 litre	b) 22.4 litre	c) 44.8 litre	d) 56.0 litre
399. What would happen whe	n a small quantity of H ₂ O ₂	is added to a solution of Fe	SO ₄ ?
a) Colour disappears			

	b) H ₂ is evolved			
	 c) An electron is added to 			
	d) An electron is lost by F	e ²⁺		
400). The oxidation state of I in	IPO ₄ is		
	a) +1	b) +3	c) +5	d) +7
401	 The number of moles of K 	MnO ₄ reduced by one mol	le of KI in alkaline medium	is
	a) 1	b) 5	c) ½	d) 1/5
402	2. A 0.50 M solution of KI re	eacts with excess of H ₂ SO ₂	$_{ m 4}$ and KIO $_{ m 3}$ solutions accord	ding to the equation, 6H+ +
	$5I^- + IO_3^- \rightarrow 3I_2 + 3H_2O_3$	Which of the following s	statements is true?	
	a) 200 mL of the KI soluti	on reacts with 0.10 mole k	(10 ₃ .	
	b) 100 mL of the KI soluti	on reacts with 0.060 M of	H_2SO_4 .	
		on produces 0.15 mole of	I_2	
	d) None of the above			
403	3. Oxidation number of chro	omium in K ₂ Cr ₂ O ₇ is :		
	a) +2	b) +3	c) +6	d) —4
404	4. A standard solution is one	e whose :		
	a) Concentration is 1 M			
	b) Concentration is unknown	own		
	c) Concentration is know	n		
	d) None of the above			
405	5. In the reaction, $SO_2 + 2H_2$	$_2S \rightarrow 3S + 2H_2O$, the subs		
	a) H ₂ S	b) SO ₂	c) S	d) H ₂ O
406	6. Oxidation number of P in			
	a) +5	b) +6	c) +7	d) +3
407	7. The oxidation number tha			
	a) Zero	b) +1	c) +2	d) +3
408	3. Oxidation number of Cl in	D)	27941731 H	
(2002)	a) +7	b) -7	c) +5	d) -5
409	9. In which reaction is hydro	[HTM 18 HTM 8 HTM - HTM] [HTM] [HTM - HTM 8	agent?	
	a) With iodine to give hyd			
	b) With lithium to give lit	ALL LAND AND THE MANAGEMENT		
	c) With nitrogen to give a			
	d) With sulphur to give hy			
410	O. In presence of moisture S	O ₂ can:		
	a) Gain electrons			
	b) Lose electrons			
	c) Act as oxidising agent			
411	d) Does not act as reducir			
41.	1. The oxidation number of		-) 12	J) 4
411	a) +4 2. Which is not correct in ca	b) +6	c) +2	d) -4
412				
	a) It decolourises KMnO ₄			
	b) It is a double salt			
	c) It is a double saltd) Oxidation state of Fe is	12 in the calt		
413	3. In the reduction of dichro		or of electrons involved nor	chromium atom is
413				
41/	a) 3 4. Which of the following is	b) 1 a redox reaction?	c) 2	d) 4
414	a) NaCl + KNO ₃ \rightarrow NaNC		b) $CaC_2O_4 + 2HCl \rightarrow CaC_4$	T + H C O
	c) $Ca(OH)_2 + 2NH_4Cl \rightarrow$		d) $2K[Ag(CN)_2] + Zn \rightarrow$	
	c) ca(on)2 + 2Nn4Cl -	GaG12 T 211113 T 21120	uj Zn[ng(CN)2] + Zll →	LAG T K2[LII(GN)4]

3.450	$K_2Cr_2O_7$ solution is required	1777	
a) 47.8 mL	b) 23.8 mL	c) 40 mL	d) 72 mL
416. Oxidation number of		3.14	n n
a) +5	b) +6	c) +4	d) -3
weight will be :	ange, 3Fe + $4H_2O \rightarrow Fe_3O_4 +$	· 4n ₂ . If the atomic weight t	or from is 56, then its equivalen
a) 42	b) 21	c) 63	d) 84
	ric acid (H_2SO_5) , the oxidation		<i>\$</i> €.
a) +8	b) +4	c) +5	d) +6
419. The reaction,			
$Ag^{2+}(aq) + Ag(s)$	$\rightleftharpoons 2Ag^+(aq)$		
is an example of			
a) Reduction	b) Oxidation	c) Comproportionation	d) Disproportionation
HCl: a) Oxidises oxalic acb) Gets oxidized by c) Furnishes H ⁺ ior d) Reduces perman		er	in the presence of frei, becaus
421. Which is not a redo a) $CaCO_3 \rightarrow CaO +$ b) $2H_2 + O_2 \rightarrow 2H$ c) $Na + H_2O \rightarrow Na$	$-CO_{2}$ $H_{2}O$ $AOH + \frac{1}{2}H_{2}$		
a) $CaCO_3 \rightarrow CaO +$ b) $2H_2 + O_2 \rightarrow 2H$	$-CO_{2}$ $H_{2}O$ $AOH + \frac{1}{2}H_{2}$		
a) $CaCO_3 \rightarrow CaO +$ b) $2H_2 + O_2 \rightarrow 2H$ c) $Na + H_2O \rightarrow Na$	$-CO_{2}$ $H_{2}O$ $AOH + \frac{1}{2}H_{2}$ $A_{2} + \frac{1}{2}CI_{2}$		
a) $CaCO_3 \rightarrow CaO +$ b) $2H_2 + O_2 \rightarrow 2H$ c) $Na + H_2O \rightarrow Na$ d) $MnCl_3 \rightarrow MnCl_2$	$-CO_{2}$ $H_{2}O$ $AOH + \frac{1}{2}H_{2}$ $A_{2} + \frac{1}{2}CI_{2}$	c) Bleaching agent	d) All of these

REDOX REACTIONS

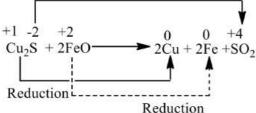
: ANSWER KEY :														
1)	c	2)	c	3)	a	4)	d	165)	a	166)	a	167)	d	168)
5)	a	6)	d	7)	d	8)	b	169)	C	170)	b	171)	a	172)
9)	c	10)	d	11)	c	12)	d	173)	c	174)	a	175)	b	176)
13)	d	14)	b	15)	d	16)	b	177)	b	178)	d	179)	c	180)
17)	d	18)	a	19)	c	20)	a	181)	a	182)	C	183)	d	184)
21)	b	22)	a	23)	b	24)	С	185)	C	186)	a	187)	c	188)
25)	a	26)	a	27)	d	28)	a	189)	a	190)	C	191)	a	192)
29)	a	30)	d	31)	c	32)	a	193)	C	194)	a	195)	a	196)
33)	a	34)	a	35)	d	36)	c	197)	b	198)	b	199)	C	200)
37)	a	38)	a	39)	b	40)	a	201)	d	202)	c	203)	d	204)
41)	a	42)	d	43)	C	44)	a	205)	b	206)	b	207)	a	208)
45)	c	46)	C	47)	a	48)	b	209)	d	210)	a	211)	d	212)
49)	b	50)	b	51)	b	52)	c	213)	b	214)	C	215)	d	216)
53)	a	54)	a	55)	d	56)	c	217)	b	218)	d	219)	C	220)
57)	a	58)	a	59)	b	60)	c	221)	b	222)	C	223)	a	224)
61)	a	62)	a	63)	a	64)	c	225)	a	226)	b	227)	b	228)
65)	d	66)	С	67)	b	68)		229)	a	230)	b	231)	С	232)
69)	a	70)	b	71)	a	72)	b	233)	c .	234)	С	235)	a	236)
73)	d	74)	a	75) - 03	c	76)	0.000	237)	d	238)	С	239)	c	240)
77)	d	78)	b	79)	b	80)	0.000	241)	b	242)	a	243)	d	244)
81)	a	82)	d	83)	С	84)		245)	d	246)	a	247)	d	248)
85)	d	86)	b	87)	С	88)	a	249)	a	250)	С	251)	b	252)
89)	C	90)	b	91)	a	92)	b	253)	a	254)	а	255)	С	256)
93)	b	94)	a	95)	d	96)	c	257)	b	258)	С	259)	a	260)
97)	b	98)	C	99)	b	100)	03.00	261)	a	262)	d L	263)	b	264)
101)	c	102)	b	103)	a	104)		265)	a	266)	b	267)	C L	268)
105)	a	106)	b	107)	b	108)		269)	C L	270)	C L	271)	b	272)
109)	b	110)	a	111)	b	112)		273)	b	274)	b	275)	c	276)
113)	a	114)	a b	115)	d a	116) 120)		277) 281)	a	278)	a	279)	d	280)
117) 121)	c b	118) 122)	a	119) 123)	d b	124)		285)	c d	282) 286)	a c	283) 287)	a a	284) 288)
125)	c	126)	a	127)		124)		289)	a	290)	d	291)	a d	292)
129)	d	130)	a	131)	a a	132)		293)	d	294)	c	295)	a	296)
133)		134)	b	135)		136)	- 1	297)	c	298)	a	299)	d	300)
137)	c b	134)	a	139)	a c	140)		301)	d	302)	b	303)	a	304)
141)	c	142)	b	143)	b	144)		305)	b	306)	d	303)	c	304)
145)	a	146)	c	147)	a	148)		309)	a	310)	c	311)	c	312)
149)	c C	150)	c	151)	b	152)	0.00	313)	a	314)	d	315)	d	316)
153)	d	154)	a	155)	b	156)		317)	a	318)	c	319)	b	320)
157)	a	158)	a	159)	c	160)	- 1	321)	a	322)	c	323)	b	324)
161)	a	162)	d	163)	a	164)		325)	d	326)	b	327)	a	328)

329)	c	330)	a	331)	a	332)	a	381)	a	382)	a	383)	a	384)	d
333)	b	334)	b	335)	d	336)	a	385)	C	386)	c	387)	d	388)	C
337)	d	338)	a	339)	c	340)	d	389)	b	390)	d	391)	C	392)	a
341)	d	342)	d	343)	C	344)	a	393)	a	394)	b	395)	a	396)	a
345)	a	346)	b	347)	C	348)	d	397)	b	398)	d	399)	d	400)	b
349)	b	350)	a	351)	d	352)	b	401)	a	402)	c	403)	c	404)	c
353)	c	354)	b	355)	b	356)	b	405)	a	406)	b	407)	b	408)	a
357)	b	358)	a	359)	a	360)	С	409)	b	410)	b	411)	a	412)	d
361)	a	362)	a	363)	b	364)	b	413)	a	414)	d	415)	b	416)	a
365)	a	366)	d	367)	a	368)	d	417)	b	418)	d	419)	С	420)	d
369)	c	370)	c	371)	a	372)	c	421)	a	422)	d			_	
373)	d	374)	b	375)	a	376)	b			8					
377)	а	378)	b	379)	d	380)	b								

REDOX REACTIONS

: HINTS AND SOLUTIONS :

1 **(c)** MN can exhibit + 7 oxidation no.


2 (c) Indicators are the substances which indicates the completion of a reaction.

3 (a) $CH_3OH \rightarrow HCOOH$ $Or C^2 \rightarrow C^{2+} + 4e$

4 (d) $3e + Mn^{7+} \rightarrow Mn^{4+}$ $\therefore M = N/Valence factor = 0.6/3 = 0.2$

5 (a) $O_3 + H_2O_2 \rightarrow H_2O + 2O_2$; H_2O_2 is reduced.

Oxidation

In this reaction Cu and Fe undergo reduction while sulphur undergoes oxidation. Hence, this is a redox reaction.

7 **(d)** ---do----

8 **(b)** $Sn^{2+} \rightarrow Sn^{4+} + 2e$ $\therefore E = M/2 = \frac{190}{2} = 95$

9 **(c)**N has +3 ox.no. which may increase (upto +5) or decrease (upto -3)

10 (d) Na_2O_2 is sodium peroxide.

11 (c)
Acidified K₂Cr₂O₇ solution oxidises SO₂ into Cr₂(SO₄)₃.

 $3SO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow K_2SO_4 +$ $Cr_2(SO_4)_3 + H_2O$ Hence, oxidation state of sulphur changes from +4 to +6.

12 **(d)** Electronation is gain of electrons i.e., $A + e \rightarrow A^-$

13 **(d)** $3\text{Fe} \rightarrow \text{Fe}_3\text{O}_4 + 8e^- \text{ oxidation}$ $4\text{H}_2\text{O} + 8e^- \rightarrow 4\text{H}_2$ Thus, there are lose of 8 electrons in the reaction

14 (b)
It is definition of volumetric analysis.

Oxidation takes place at anode (c) is not feasible, i.e., Cr³⁺ is not oxidised to Cr₂O₇²⁻ under given conditions. Hence, option (d) is correct.

16 **(b)** $NO_3^- \to NH_4^+ \text{ or } N^{5+} + 8e^- \to N^{3-}$ Thus, Eq. wt. of $NO_3^- = \frac{62}{8}$

17 **(d)**Carbon in oxalic acid has +3 oxidation state which may be increases to +4 (in CO_2) and thus, can act as reductant. Rest all have highest oxidation number. Ox.no. of N, Mn and S in HNO_3 (+5), $KMnO_4$ (+7) and H_2SO_4 (+6).

18 (a) Meq. of HNO₃ = Meq. of I₂ $\frac{w}{63/3} \times 1000 = \frac{5}{254/10} \times 1000$ $\therefore w_{HNO_3} = 4.13 \text{ g}$

19 **(c)** $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$ $S^{4+} \rightarrow S^{6+} + 2e$

20 (a)
CN⁻ is reducing and complexing agent.

21 **(b)** $Na \xrightarrow{NH_3} Na^+ + (NH_3)x^e$ Ammonia solvated electrons are strongly reducing, impart blue colour to solution and are good conductor of current.

 Fe_3O_4 is a mixture of FeO and Fe_2O_3 .

VSO₄ is isomorphous to, FeSO₄. (NH₄)₂ SO₄. 6H₂O.

$$MnO_4^- = Mn = +7$$

$$MnO_4^{2-} = Mn = +6$$

$$MnO_2 = Mn = +4$$

$$Mn_2O_3 = Mn = +3$$

Hence, changes in oxidation number are 5,1,3,4.

Alkaline earth metals have only +2 ox.no. in combined state.

26 (a)

Alkali metals are strongest reducing agents.

$$S_2^{2+} \rightarrow 2S^{6+} + 8e$$

28 (a)

$$2Fe^0 \rightarrow Fe_2^{3+} + 6e$$
.

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$a + (-2) = 0$$

$$a = +2$$

31 (c)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2 + 3e$$

Meq. of oxidant = Meq. of reductant

$$0.5 \times V = 2 \times 2000$$

$$V = 8$$
 litre

Oxygen shows -1 oxidation state in H_2O_2 .

$$2(+1) + 2x = 0$$

$$2x = -2$$

$$x = -1$$

34 (a)

$$I^{+5}$$
 $I^{-} + (IO_3)^{-1} + H^{+} \longrightarrow I_2 + H_2O$

$$2I^{-} \longrightarrow I_2 + 2e^{-}$$
 ... (i) × 5

$$10e^{-} + 2(IO_3)^{-1} \longrightarrow I_2$$
 ... (ii

On adding Eq. (i) and (ii), we get

$$10I^- + 2IO_3^- \rightarrow 6I_2$$

To balance O atom, add 6H2O molecules on RHS

and 12H+ on LHS, then

$$10I^{-} + 2IO_{3}^{-} + 12H^{+} \rightarrow 6I_{2} + 6H_{2}O$$

or
$$5I^- + IO_3^- + 6H^+ \rightarrow 3I_2 + 3H_2O$$

Cl has +7 ox.no. in KClO₄.

36 **(c)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+};$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

37 (a)

Oxidation number in elemental form is zero. Covalency is two because of S-S-S-S-chain.

38 (a)

 Fe_2O_3

∴ Total charge on cation or anion = +6

$$E = \frac{112}{6} \text{ or } \frac{56}{3}$$

39

C₃O₂ is carbon sub-oxide.

Thus,
$$3a - (2 \times 2) = 0$$

$$a = +\frac{4}{3}$$

40 (a)

$$Cu^{2+} + 2I^{-} \rightarrow CuI_{2} \rightarrow Cu_{2}I_{2} + I_{2}$$

$$I_2 + Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$$
 (Redox

change)

Oxidation state of oxygen in H_2O_2 is -1. -1 is the intermediate oxidation state of oxygen.

$$2e + S^{6+} \rightarrow S^{4+}$$

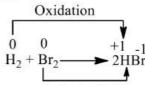
S of H₂SO₄ is reduced.

43 (c)

$$1 + a + 3 \times (-2) = -1$$

$$a = +4$$

44 (a)


$$1 + a \times 2 = 0$$

$$a = -\frac{1}{2}$$

$$\therefore a = -\frac{1}{2}$$

Ox.no. of alkali metals is always + 1.

45 (c)

Only this reaction involves oxidation and reduction.

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 2$$

$$[C_2^{3+} \rightarrow 2C^{4+} + 2e] \times 5$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$C_2^{3+} \rightarrow 2C^{4+} + 2e$$

 \therefore 3 mole of KMnO₄ = 5 mole of FeC₂O₄

$$2I^{7+} + 14e \rightarrow (I^0)_2$$

$$E_{IO_4^-} = \frac{M}{7}$$

49 (b)

$$2e + 2Fe_3^{(8/3)+} \rightarrow 3Fe_2^{3+}$$

 $= \frac{1}{\text{No. of electrons lost or gained by one molecule}} M$

$$=\frac{M}{1}$$

50 (b)

 $Meq. of HNO_3 = Meq. of Fe^{2+}$

(Eq. wt. of
$$HNO_3 = M/3$$
)

$$0r3 \times 3 \times V = \frac{8}{56} \times 1000$$

$$V = 15.87 \, \text{mL}$$

51 (b)

The oxidation state of N are +5, +2, 0 and -3 in HNO_3 , NO, N_2 and NH_4Cl respectively.

52 (c)

The oxidation state of iodine in HIO_4 is + 7 as

$$1 + x + 4(-2) = 0$$

$$x = +7$$

The oxidation state of iodine in H_3IO_5 is +7 as

$$3+x+5(-2)=0$$

$$x = +7$$

The oxidation state of iodine in H_5IO_6 is +7 as

$$5+x+6(-2)=0$$

$$x = +7$$

53 **(a)**

Ag+is reduced to Ag.

54 (a)

$$2e + S^{6+} \rightarrow S^{4+}$$

S of H₂SO₄ is reduced.

55 (d)

The characteristics of oxidant. Note these.

56 (c)

$$SO_2 + H_2O \rightarrow SO_3 + 2H$$
;

$$Cl_2 + H_2O \rightarrow 2HCl + O$$

57 **(a**)

Meq. of bleaching powder = Meq. of Cl_2 = Meq. of hypo

hypo

$$\frac{w}{35.5} \times 1000 = 50 \times \frac{1}{10}$$

$$= 0.1775$$

:. Per cent
$$Cl_2 = \frac{0.1775}{5} \times 100 = 3.55 \%$$

$$a+5\times(-1)=0$$

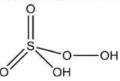
$$\therefore a = +5$$

$$Fe^{2+} \to Fe^{3+} + e$$

$$(C^{3+})_2 \to 2C^{4+} + 2e$$

$$Fe^{2+} + C_2O_4^{2-} \to CO_2 + Fe^{3+} + 3e$$

$$\therefore E = M/3$$


$$(0^{-1})_2 \rightarrow 0^0_2 + 2e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

5 mole $H_2O_2 \equiv 2$ mole $KMnO_4$

61 **(a)**

Caro's acid is H₂SO₅. It has a peroxide linkage so, oxidation state of S is

Let the oxidation state of S is x.

H₂SO₅(one peroxide bond)

$$+2 + x + 3(-2) + 1(-2) = 0$$

$$2 + x - 6 - 2 = 0$$

$$x - 6 = 0$$

$$x = 6$$

62 **(a)**The formula for Eq. wt. of reductant or oxidant.

63 (a)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$E = M/5$$

No doubt oxygen is taken in respiration, but oxidant-reduction occur simultaneously.

65 (d)

$$aK_2Cr_2O_7 + bKCl + cH_2SO_4$$

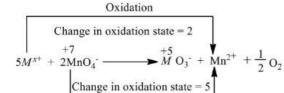
$$\rightarrow x \text{CrO}_2 \text{Cl}_2 + y \text{KHSO}_4 + z \text{H}_2 \text{O}_3$$

66 **(c)**

Both Os and Ru show + 8 ox.no.

67 (b)

Two oxygen atom have peroxide linkage, (i. e., -1 oxidation number) and six have -2 ox.no.


Thus,
$$2 \times 1 + 2 \times a + 6 \times (-2) + 2 \times (-1) = 0$$

$$a = +6$$

Reduction

$$x + 2 = 5$$

$$\therefore x = 5 - 2 = +3$$

69 (a)

Meq. of $K_2Cr_2O_7 = Meq.$ of $FeSO_4$ $1 \times V = \frac{10}{152/1} \times 1000$

$$V = 65.78 \, \text{mL}$$

70 **(b)**

 $Cl_2 + H_2O \rightarrow 2HCl + O$; thus, matter is oxidised by liberated oxygen.

72 **(b)**

$$SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$$

73 **(d)**

Addition of KI to CuSO₄ makes it dark brown.

74 (a)

Mn is stronger oxidising agent in +7 oxidation state. e.g., $KMnO_4$.

75 (c)

$$Cr_2O_7^{2-} + 14H^+ + nFe^{2+}$$

 $\rightarrow 2Cr^{3+} + nFe^{3+} + 7H_2O$
 $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$

(reduction)...(i)

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

(oxidation)...(ii)

Eq.(ii)is multiplied by 6

$$6\text{Fe}^{2+} \rightarrow 6\text{Fe}^{3+} + 6\text{e}^{-}$$

Thus, balanced equation is

$$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+}$$

$$\rightarrow$$
 2Cr³⁺ + 6Fe³⁺ + 7H₂O

Hence, the value of 'n' is 6.

76 **(b)**

$$4e + N^{5+} \rightarrow N^+$$

∴ Possible product is N₂0.

77 (d)

Find oxidation number of P in each.

78 (b)

$$CrO_4^{2-} + SO_3^{2-} \rightarrow Cr(OH)_4^- + SO_4^{2-}$$

Let the oxidation number of Cr is x in CrO_4^{2-}

$$x + 4(-2) = -2$$

 $x = \epsilon$

and in $Cr(OH)_4^-$ the oxidation number of Cr is y

$$y + 4(-2) + 4(1) = -1$$

$$y - 8 + 4 = -1$$

$$y = 3$$

Hence, oxidation number of Cr changes from +6 to +3.

79 (b)

Find oxidation no.in each.

80 (d)

$$Mn^{7+} + e \rightarrow Mn^{6+}$$

$$E = M/1$$

81 (a)

The sum of oxidation states of all elements in an ion is equal to charge on it.

Let the oxidation state of S in $SO_4^{2-} = x$

$$\therefore x + (-2 \times 4) = -2$$

$$0r x = +6$$

32 **(d)**

$$\text{Sn}^{2+} \rightarrow \text{Sn}^{4+} + 2\text{e}; 2\text{e} + \text{Hg}^{2+} \rightarrow \text{Hg}^{0}$$

83 (

Oxidation number of iodine in given species is as follows

O.N. of iodine in $IF_3 = +3$

O.N. of iodine in $I_3^- = -\frac{1}{2}$

O.N. of iodine in $IF_5 = +5$

O.N. of iodine in $IF_7 = +7$

84 (a)

$$1 + a + 3 \times (-2) = 0$$

$$\therefore a = +5$$

85 **(d)**

Suppose O.N. of O = x suppose

$$O.N. of O = x$$

$$+1 + 3x = 0$$
 $2 \times 1 + 2x = 0$

$$3x = -1 \qquad 2 + 2x = 0$$

$$=-\frac{1}{3} \qquad \qquad 2x=-2$$

$$x = -0.33$$
 $x = -\frac{2}{3}$

$$x = -1$$

86 **(b)**

$$I_2^0 \rightarrow 2I^- + 2e$$

87 (c)

Os and Ru show +8 oxidation number.

88 (a)

Meq. of AgNO₃ =
$$100 \times 1 - 100$$

Meq. of
$$CuSO_4 = 100 \times 1 \times 2 = 200$$

Thus, H₂S is needed in the same Meq. ratio.

89 (c)

$$Na_2S_2O_3$$

$$2(+1) + 2x + 3(-2) = 0$$

$$2 + 2x - 6 = 0$$

$$x = +2$$

Na2S4O6

$$2(+1) + 4(x) + 6(-2) = 0$$
$$2 + 4x - 12 = 0$$

$$4x = +10$$
$$x = +2.5$$

Meq. of K⁺ = Meq. of KMnO₄
=
$$\frac{1}{5} \times 1000 = 200$$

$$\therefore$$
 Eq. of K⁺ = $\frac{200}{1000}$ = 0.2

Also, mole of
$$K^+ = \frac{0.2}{5} \left[\frac{\text{Valence factor} = 5}{\text{Mn}^{7+} + 5e} \xrightarrow{\text{Mn}^{2+}} \text{Mn}^{2+} \right] = 0.04$$

: No. of K⁺ =
$$\frac{0.2}{5}$$
 × 6.023 × 10²³ = 2.4 × 10²²

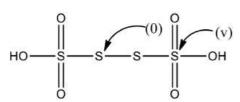
 $4e + Br^{5+} \rightarrow Br^{1+}$; Thus, BrO_3^- is to be reduced by a reducing agent.

$$6e + (N^0)_2 \rightarrow 2N^{-3}$$

$$6e + (N^0)_2 \rightarrow 2N^{-3}$$

$$\therefore E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$$

F2 is oxidant; ClO4 and MnO4 are also oxidant.


96 (c)

None of elements in reaction (c) undergoes a change in oxidation number, therefore reaction (c) is not a redox reaction

$$^{+1+5-2}$$
 $^{+1-1}$ $^{+1-1}$ $^{+1+5-2}$
Ag NO₃ + NaCl \longrightarrow Ag Cl + Na NO₃

It is a double decomposition reaction

Na₂S₄O₆ is salt of H₂S₄O₆ which has the following structure

⇒ Difference in oxidation number of two types of sulphur = 5

98 (c)

Sum of oxidation no. of atoms in it is zero.

$$\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$$

$$\therefore E = M/2 = \frac{119 + 71}{2} = 95$$

100 (b)

$$2 \times 1 + a + 4 \times (-2) = 0$$

$$a = +6$$

101 (c)

Electronic configuration of

Mn: $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ More stable

 $Mn^{2+}: 1s^2, 2s^22p^6, 3s^23p^6 3d^5$ half filled d Mn^{7+} : $1s^2$, $2s^22p^6$, $3s^23p^6$

102 (b)

Meq. of $H_2O_2 = 25 \times 0.5 \times 2 = 25$; Meq. of $KMnO_4 = 50 \times 0.2 \times 5 = 50$; \div 25 Meq. or 5 milli mole of $\text{KMnO}_4\,$ are left.

103 (a)

$$K - C \equiv N$$

N is more electronegative and thus, has -3oxidation number as it involves three covalent bonds.

Thus, 1 + a + (-3) = 0a = +2

104 (a)

Ox.no.of Ni is equal to zero.

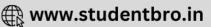
105 (a)

$$Mn^{7+} + le \rightarrow Mn^{6+}$$

$$\therefore E = M/1$$

$$E = M/1$$

Mn has +6 ox.no. in K_2MnO_4 and +2 ox.no. in MnSO4.


107 (b)

In reaction 0

$$H_2O + Br_2 \rightarrow HOBr + HBr$$

The oxidation number of bromine increases from 0 to +1 and decreases from 0 to -1, so due to this reason bromine is both oxidised as well as reduced in the above reaction.

$$1 + 2 \times (+1) + a + 2 \times (-2) = 0$$

 $\therefore a = +1$

109 (b)

H in LiAIH₄ has −1 ox.no. and thus, easily oxidized.

110 (a)

NO in iron complex has +1 ox.no.

Thus,
$$a + 5 \times (0) + 1 + 1 \times (-2) = 0$$

$$\therefore a = +1$$

111 (b)

Let the oxidation state of Fe in $Fe_3O_4 = x$

$$\therefore 3x + 4 \times (-2) = 0$$

Or
$$3x - 8 = 0$$

$$\therefore x = \frac{6}{3}$$

112 (d)

$$As^{3+} \rightarrow As^{5+} + 2e$$

$$S^{2-} \rightarrow S^{6+} + 8e$$

113 (a)

$$3e + Mn^{7+} \rightarrow Mn^{4+}; E = \frac{158}{3} = 52.66$$

114 (a)

$$8e + N^{5+} \rightarrow N^{3-}$$

$$E_{\text{NO}_3^-} = \frac{M}{8} = \frac{62}{8}$$

$$E_{\rm NH_4^+} = \frac{M}{8} = \frac{18}{8}$$

115 (d)

$$1 + a + 4 \times (-2) = 0$$

$$a = +7$$

116 (d)

Find oxidation number of iodine in each.

$$Na + H_2O \rightarrow NaOH + (1/2)H_2$$
.

$$3 \times 1 + a + 6 \times (-1) = 0$$

$$\therefore a = +3$$

119 (d)

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$(2I^- \to I_2 + 2e^-) \times 3$$

$$\frac{(2I^{-} \rightarrow I_{2} + 2e^{-}) \times 3}{Cr_{2}O_{7}^{2-} + 14H^{+} + 6I^{-} \rightarrow 2Cr^{3+} + 7H_{2}O + 3I_{2}}$$

Hence, number of moles of I_2 produced =3

$$Mn^{4+} + 2e \rightarrow Mn^{2+}$$
;

MnO2 is itself reduced.

$$Meq. of O_2 = Meq. of KMnO_4 = 100 \times 0.5$$

$$\frac{w}{9} \times 1000 = 50$$

$$\therefore w_{\rm O_2} = 0.4 \, \rm g$$

$$\therefore V_{O_2} = \frac{224 \times 0.4}{32} = 0.28 \text{ litre}$$

Oxidation involves loss of electrons and reduction involves gain of electrons, hence in case of oxidation-reduction reactions(redox reactions) charge remains conserved

123 (b)

 $Ni \rightarrow Ni^{2+} + 2e$; Ni is oxidized and thus, reductant.

124 (a)

$$2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$$

$$H_2SO_4$$
 – Reduced to $\rightarrow SO_2$

agent

125 (c)

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr.$$

126 (a)

$$H_2^{-2} \longrightarrow \overset{0}{S}$$

The oxidation number of S increases from -2 to 0 in elemental sulphur and hence, H2S gets oxidized

127 (a)

S₈has zero oxidation state of S.

In
$$S_2F_2$$
: 2 × a + 2 × (-1) = 0; \therefore a = +1

In
$$H_2S: 2 \times 1 + a = 0;$$
 $\therefore a = -2$

128 (a)

Cr in CrO2Cl2 has +6 and Mn in MNO4 has +7 oxidation number respectively, the highest value

129 (d)

F is more electronegative than oxygen.

Oxidation number of Cl in ClO₃.

$$ClO_3 = -1$$

$$x + 3(-2) = -1$$

$$x = +6 - 1$$

$$x = +5$$

131 (a)

$$2e + Cl^+ \rightarrow Cl^-$$

$$N = \frac{15}{74.5/2 \times 1} = 0.40$$

In ionic hydrides, H has -1 ox.no.

133 (c)

Let the oxidation number of Xe is x in XeOF₂.

$$x + (-2) + 2(-1) = 0$$

$$x - 2 - 2 = 0$$

$$x = +4$$

134 (b)

No change in ox.no. of any species.

$$H_2^{1+} + 2e \rightarrow H_2^0$$

136 (d)

Both are same.

137 (b)

$$2 \times 1 + 2 \times 1 + 4 \times (-2) = 0$$

 $\therefore a = +3$

138 (a)

Let oxidation state of P in Ba $(H_2PO_2)_2$ is x, then

$$2(+1) + 2[2(+1) + x + 2(-2)] = 0$$

$$2 + 2(2 + x - 4) = 0$$

$$2+4+2x-8=0$$

$$2 + 2x - 4 = 0$$

$$2x = 2$$

$$x = +1$$

139 (c)

$$3 \times 1 + a + 2 \times (-2) = 0$$

$$a = +1$$

140 (a)

Calculate ox.no. of S by assuming $(CH_3)^+$ and SO^{2-} .

$$H_2^{1+}O \rightarrow H_2^0$$
; Steam is reduced.

142 **(b)**

 $2KClO_3 \rightarrow 2KCl + 3O_2$. An intramolecular redox change is one in which one element of a compound is oxidized $(O^{2}$ to $O_{2}^{0})$ and one element is reduced $(Cl^{5+}to Cl^{1-})$

143 (b)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

144 (b)

Due to smallest halogen, it possesses maximum tendency for accepting electron in aqueous

$$(1/2) F_2 + e + aq \rightarrow F^-, \Delta H = -ve(max. for F_2)$$

Bromine has zero oxidation state because it is in free state.

$$Br_2 \rightarrow BrO_3^-$$

Let the oxidation number of Br in BrO_3^- is x.

$$x + (-2 \times 3) = -1$$

$$x + (-6) = -1$$

$$x = +6 - 1$$

$$x = +5$$

So, oxidation number changes from 0 to +5.

146 (c)

ie, it has four peroxide bonds each

having an oxidation number of -1 and one double bond in which oxidation number of 0 is -2

Therefore,
$$x + 4 \times (-1) + 1 \times (-2) = 0$$

$$\therefore x = \times 6$$

147 (a) Indicator then only can show redox change with either of the titre species to indicate end point.

$$4CrO_5 + 6H_2SO_4 \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$$

149 (c)

$$\begin{array}{c|c}
 & & & \downarrow \\
 & 4P + 3KOH + 3H_2O \longrightarrow 3KH_2PO_2 + PH_3 \\
\hline
 & -3 \text{ unit decreases}
\end{array}$$

Hence, P is both oxidized as well as reduced

150 (c)

$$2 \times a + 7 \times (-2) = -4$$

$$\therefore a = +5$$

151 (b)

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$$
.

Let the oxidation number of oxygen in following compounds is x.

In OF₂

$$x + (-1)2 = 0$$

$$x = +2$$

In KO₂

$$+1 + (x \times 2) = 0$$

$$2x = -1$$

$$x = -\frac{1}{2}$$

In BaO2

$$+2 + (x \times 2) = 0$$

$$2x = -2$$

$$x = -1$$

O₃, oxidation number of oxygen is zero because ox free state or in any of its allotropic form is always

Thus, the increasing order of oxidation number is $BaO_2 < KO_2 < O_3 < OF_2$


$$-1$$
 $-\frac{1}{2}$ 0 +2

153 (d)

Na-Hg is uncombined state of sodium.

A measuring flask has a definite volume.

Since, $K_3Fe(CN)_6$ reacts with $FeSO_4$ (if added internally) to give blue colour of iron complex.

156 (a)

$$2 \times a + 5 \times 1 = +1$$
$$\therefore a = -2$$

157 (a)

Oxygen of H_2O_2 gets reduced from -1 to -2.

158 (a)

Meq. of HNO₃ = Meq. of I₂

$$\frac{w}{63/1} \times 1000 = \frac{5}{254/10} \times 1000$$

 $\therefore w = 12.4 \text{ g}$

$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

F⁻ can be oxidized to F₂ only by electrolysis.

161 (a)

$$2S_2^{2+} \rightarrow S_4^{(5/2)+} + 2e : \text{Eq. wt. of Na}_2S_2O_3 = \frac{M}{1}$$

 $I_2^0 + 2e \rightarrow 2I^-$

162 (d)

The same species in each reaction is oxidized and reduced as well to give disproportionation reaction.

163 (a)

N₃H (hydrazoic acid)

$$+3(x)+1=0$$

$$3x + 1 = 0$$

$$x = -\frac{1}{3}$$

164 (a)

$$Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$$

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

 $\therefore \frac{\text{Moles of cerric ammonium sulphate}}{\text{Moles of potassium permanganate}} = \frac{1}{1/5}$

$$= 5.0$$

$$N^{3-} \rightarrow N^{2+} + 5e$$

$$\therefore E_{NH_3} = \frac{17}{5}$$

166 (a)

C has -4 ox.no. in CH_4 ,

In rest all it has +4 ox.no.

167 **(d)**

$$[\operatorname{Cr}_{2}^{6+} + 6e \longrightarrow 2\operatorname{Cr}^{3+}] \times 1; [\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e] \times 3$$

168 (a)

Milliequivalent $[(W/\text{Eq.wt.}) \times 1000]$ or millimole $\left[\left(\frac{W}{M}\right) \times 1000\right]$ do not change on dilution.

169 (c)

 Cr^{3+} ion is green; $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$.

$$Hg + O_3 \rightarrow HgO + O_2$$

$$a + (4 \times 0) + 2 \times (-1) = 1$$

 $\therefore a = +3$

$$2V^{2+} \rightarrow V_2^{5+} + 6e$$

$$Cr^{6+} + 3e \rightarrow Cr^{3+}$$

$$E = M/3$$

174 (a)

Ox.no. of Cr on both side is +6

175 **(b)**

$$S^{2-} \rightarrow S^{4+} + 6e$$

$$\therefore$$
 Eq. = mole \times 6

$$2 \times 1 + a + 4 \times (-2) = 0$$

$$a = +6$$

177 **(b)**

Iodine has -1 (minimum ox.no.) and +7 (maximum ox.no.).

178 (d)

These are formulae of Meq.

179 (c)

$$CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$$

180 (a)

I in KIO_4 has +7 ox.no.

181 (a)

$$2 \times a + 3 \times (-2) = -2$$

$$a = +2$$

182 **(c)**

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+};$$

Eq. wt. of
$$Cr = \frac{at. wt.}{3}$$

183 (d)

$$H_2O_2 + Na_2CO_3 \longrightarrow Na_2O_2 + CO_2 + H_2O_2$$

None of the elements changes its oxidation number

184 (a)

Usually burettes have least count of 0.1 mL.

185 (c)

The oxidation state of N in NH_3 is

$$x + 3(+1) = 0$$

$$x = -3$$

The oxidation state of N in HNO3 is

$$1 + x + 3(-2) = 0$$

$$x = 5$$

The oxidation state in N in NaN₃ is

$$+1 + 3x = 0$$

$$x = -1/3$$

The oxidation state of N in Mg₃N₂ is

$$3(2) + 2x = 0$$

$$6 + 2x = 0$$

$$x = -3$$

Hence, three molecules

(i.e., NH3, NaN3, Mg3N2) have negative oxidation state.

Fe in Fe (CO)₅ has zero oxidation no., i.e., the lowest for metals.

187 (c)

The weight of rider used is 0.0002 g.

188 (d)

Ions are hydrated on dissolution of salt in water.

189 (a)

Ox.no. of each element on two sides is same.

$$10e + 2Br^{5+} \rightarrow Br_2^0$$
 : Eq. wt. of KBrO₃ = $\frac{M}{5}$
2Br⁻ \rightarrow Br₂ + 2e

191 (a)

Corrosion involves oxidation of species.

192 (b)

$$\mathrm{MnO_4^-} + 8\mathrm{H^+} + 5e^- \longrightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O}$$

 $\mathrm{[Fe^{2+} \longrightarrow Fe^{3+}} + e^-]^5$

$$[Fe^{2+} \rightarrow Fe^{3+} + e^{-}]^{5}$$

MnO₄⁻ + 8H⁺ + 5Fe²⁺ \rightarrow Mn²⁺ + 5Fe³⁺ + 4H₂O

Five electrons gets transferred.

193 (c)

$$1 + a + 3 \times (-2) = 0$$

$$\therefore a = +5$$

194 (a)

The species present in solution but does not take part in the reaction and are also omitted while 209 (d) writing the potential redox change are called spectator ion.

195 (a)

It is the formula of turns bull's blue.

196 (b)

Si has 4 electrons in its valence shell. When it reacts with strongly electropositive metal like Na, Mg, K etc., it gives 4 electrons and its oxidation state in this case is -4.

197 (b)

Oxygen in H_2O_2 has ox.no. -1 which can increase or decrease.

198 (b)

$$A^{n-} \longrightarrow A^{a+} + (a+n)e$$

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$

Also, Meq of $A = \text{Meq. of } K_2 \text{Cr}_2 \text{O}_7$

$$3.26 \times 10^{-3} (a+n) = 1.68 \times 10^{-3} \times 6$$

Or
$$a + n = 3$$

$$a = 3 - n$$

199 (c)

$$H_2^0 \rightarrow H_2^+ + 2e (H_2O \text{ is formed})$$

200 (d)

$$2 \times a + 7 \times (-2) = 0$$

$$a = +7$$

Due to higher E_{OP}^0 order.

202 (c)

Cl atom is oxidised (Cl¹⁺ \rightarrow Cl⁵⁺ + 4e) as well as Cl atom is reduced $(Cl^{1+} + 2e \rightarrow Cl^{-})$. Such reactions are called auto redox disproportionation reactions.

203 (d)

Ox.no. of S in $Na_2S_4O_6$ is no doubt 2.5 but it is average of two values, i.e.,

$$\frac{2 \times (+5) + 2 \times 0}{4} = +5/2$$

204 (a)

De-electronation is loss of electrons, i.e. $M \rightarrow$ $M^{4+} + 4e$

205 (b)

 $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$; This is simple decomposition and not a redox change.

206 (b)

S2-has minimum ox.no. and thus, can act only as reducing agent.

207 (a)

It imparts its colour at end point.

208 (c)

$$Zn^0 \rightarrow Zn^{2+} + 2e$$

Oxygen has highest electron affinity in its family.

210 (a)


Na₂[Fe(CN)₅NO]

211 (d)

The formula is obtained by taking an account of g

$$Xe = \frac{53.3}{131} = 0.4, F = \frac{46.5}{20} = 2.325,$$

212 (c)

N in NH₃, NH₄, N₃H and NO₂ has -3, -3, -1/3 and 222 (c) +3 oxidation number respectively.

213 **(b)**

Meq. of
$$H_2O_2 = \text{Meq. of KMnO}_4$$

 $\frac{w}{34/2} \times 1000 = 10 \times 1$

$$\therefore w_{H_2O_2} = 0.17$$

$$\therefore \text{ Per cent purity} = \frac{0.17}{0.2} \times 100 = 85\%$$

214 (c)

$$Mn^{7+} + e \rightarrow Mn^{6+} (MnO_4^{2-})$$

 $Mn^{7+} + 3e \rightarrow Mn^{4+} (MnO_2)$
 $2Mn^{7+} + 8e \rightarrow (Mn^{3+})_2 (Mn_2O_3)$
 $Mn^{7+} + 5e \rightarrow Mn^{2+} (MnO_2)$

215 (d)

The reaction involves:

$$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O(l)$$

 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

The reaction gives blue colour only after all the Na₂S₂O₃ is used. The reaction is carried out with adjusted amount of Na2S2O3 so that only a fraction of H2O2 and KI reaction occurs before the blue colour of starch-I2 appears, however the slow redox reaction of H₂O₂—I₂ continues. The appearance of blue colour is like clock alarm and in such reactions time for the appearance of blue 227 (b) colour is noticed. The phenomenon is used in studying rate of reaction. If time taken for blue 228 (b) colour appearance is longer, the reaction is slow and vice - versa.

216 (c)

N in
$$(N_2H_5)_2SO_4$$
 has -2 ox.no.

217 (b)

The 5p -electrons of outermost shell in iodine are unpaired during their excitation to 5d —subshell.

218 (d)

A characteristic property of transition elements.

Let the oxidation state of sulphur in $Na_2S_4O_6$ is x. $Na_2S_4O_6$

$$1 \times 2 + 4 \times x + (-2) \times 6 = 0$$

$$2 + 4x - 12 = 0$$

$$4x - 10 = 0$$

$$4x = 10$$

$$x = \frac{10}{4} = 2.5$$

F₂ is strongest oxidant among all the species.

221 (b)

S has +6 ox. no. in SO_3

$$3 \times a + 1 \times 1 = 0$$

$$\therefore a = -1/3$$

223 (a)

Tendency to lose more electron for cation decreases.

224 (a)

∴
$$4\text{Zn} + \text{NO}_3^- + 10\text{H}^+ \rightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ + 2\text{H.} O(\text{Not equation})$$

$$4Zn + NO_3^- + 10HCl \rightarrow 4Zn^{2+} + NH_4^+ + 5Cl_2 + 3H_2O$$

: 1 mole of NO₃ (0r NaNO₃) is reduced by

=10 moles of HCl

 $\therefore \frac{1}{2}$ mole of No₃ will be reduced by

 $= 10 \times \frac{1}{2}$ moles of HCl

= 5 moles of HCl

225 (a)

$$Meq. of FeSO_4 = Meq. of KMnO_4$$

$$\frac{w}{152/1} \times 1000 = 200 \times 1$$

$$\therefore w = 30.4 \text{ g}$$

226 (b)

$$BiO_3^- + 6H^+ + 2e^- \rightarrow Bi^{3+} + 3H_2O$$

 $r = 2$

$$5H_2O_2 + 2CIO_2 + 2OH^- \rightarrow 2CI^- + 5O_2 + 6H_2O$$

$$Meq. of Na_2S_2O_3 = Meq. of CuSO_4$$

$$\therefore V \times 0.4 \times 1 = 50 \times 0.2 \times 1$$

229 (a)

$$N = \frac{47.5}{189.7/2 \times 2.25} = 0.222 \, N$$

$$2e + Fe_2^{3+} \rightarrow 2Fe^{2+}$$

231 (c)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$C_2^{3+} \rightarrow 2C^{4+} + 2e$$

232 **(b)**

Oxidation no. of N in NO+ is

$$(1 \times x) + 1 \times (-2) = +1$$

$$\therefore x = +3$$

Oxidation no. of Cl in ClO₄ is

$$(1 \times x) + 4 \times (-2) = -1$$

$$x = +7$$

233 (c)

1. Sulphurous acid H₂SO₃

$$2 + x + (-2 \times 3) = 0$$

$$x - 4 = 0$$

$$x = 4$$

2. Pyrosulphuric acid (H₂S₂O₇)

$$2 + 2x + (-2 \times 7) = 0$$

or
$$2x = 12$$

3. Thiosulphuric acid (H₂S₂O₃)

$$2 + 2x + (-2 \times 3) = 0$$

or
$$2x = 4$$

$$x = 2$$

4. Dithionous acid $(H_2S_2O_4)$

$$2 + 2x + (-2 \times 4) = 0$$

$$2x = 6$$

$$\therefore x = 3$$

234 (c)

$$KCN + AgCN \rightarrow KAg(CN)_2$$

(Complex formation)

CN- also acts as reducing agent.

235 (a)

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$
.

236 **(a)**

Meq. of oxalic acid = Meq. of KMnO₄

$$V \times 0.1 \frac{250 \times 8}{100 \times 31.6} \times 1000 = 6.3$$
 litre

237 **(d**)

H₃PO₃ is phosphorous acid.

238 (c)

$$\mathrm{Cr_2^{6+}} + 6e \rightarrow 2\mathrm{Cr^{3+}}$$

239 (c)

$$H_4P_2O_5: 4 \times 1 + 2 \times a - 5 \times 2 = 0$$

$$H_4P_2O_6: 4 \times 1 + 2 \times a - 6 \times 2 = 0$$

$$a = +4$$

$$H_4P_2O_7: 4 \times 1 + 2 \times a - 7 \times 2 = 0$$

240 (c)

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-.$$

241 (b)

Meq. of oxalate = Meq. of KMnO4

$$\frac{w}{88/2} \times 1000 = 90 \times \frac{1}{20}$$

w oxalate ion = 0.198 g

:. % of oxalate ion =
$$\frac{0.198}{0.3} \times 100 = 66\%$$

242 (a)

 $Meq. of Cl_2 = Meq. of KMnO_4$

$$\frac{w}{71/2} \times 1000 = \frac{10}{31.6} \times 1000$$

$$w_{\text{Cl}_2} = 11.23 \text{ g}$$

$$\therefore V_{\text{Cl}_2} = \frac{22.4 \times 11.23}{71} = 3.54 \text{ litre}$$

243 (d)

$$N = \frac{15.8 \times 1000}{158/5 \times 100} = 5$$

244 (b)

$$Mn^{7+}5e \rightarrow Mn^{2+}$$

245 (d)

$$S_2O_3^{2-} \rightarrow S(s)$$

or
$$4e + S_2^{2+} \rightarrow 2S^0$$

246 (a)

Meq. of KMnO₄ = Meq. of FeC₂O₄
Fe²⁺C₂²⁺O₄
$$\rightarrow$$
 Fe³⁺ + 2C⁴⁺O₂ + 3e

$$0.1 \times 5 \times V = \frac{100 \times 10^{-3}}{144/3} \times 1000$$

$$V = 4.1 \text{ mL}$$

247 (d)

It is precipitation reaction.

248 (a)

Meq. of lime stone = Meq. of CaC_2O_4

= Meq. Of CaO

$$40 \times 0.250 = \frac{w}{56/2} \times 1000$$

 $\therefore w_{CaO} = 0.28$

$$\therefore$$
 per cent of CaO = $\frac{0.28 \times 100}{0.518}$ = 54%

249 (a)

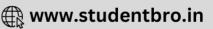
Equate charge on both side, $2 \times 3 + 2 = 2 \times 2 + a$

 $\therefore a = +4$; Thus, Sn⁴⁺ is choice.

250 (c)

 $\rm Br_2$ is disproportionated in basic medium as $\rm 3Br_2 + 3Na_2CO_3$

$$\rightarrow$$
 5NaBr + NaBrO₃ + 3CO₂


251 (b)

Carbon has negative oxidation no.in Mg_3C_2 and positive oxidation number in C_3O_2 ; O is more electronegative than C. Mg is more electropositive than C.

252 (d)

It is a complexation reaction involving reduction of I_2 and oxidation of KI.

253 (a)

Oxidation state of Cr in Cr2O3 is

$$Cr_2O_3$$

$$2x + (-2)3 = 0$$

$$2x - 6 = 0$$

$$2x = 6$$

$$x = +3$$

254 (a)

$$2 \times a + 2 \times (-1) = 0$$

$$a = a = a + 1$$

255 (c)

N has + 1 ox.no.

256 (a)

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

 $5 \text{ mole } \text{FeSO}_4 = 1 \text{ mole } \text{KMnO}_4$

$$'X' = \frac{2}{3}$$
 mole

Or
$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$(C^{3+})_2 \rightarrow 2C^{4+} + 2e$$

$$FeC_2O_4 \rightarrow Fe^{3+} + 2C^{4+} + 3e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

 $5 \text{ mole } \text{FeC}_2\text{O}_4 = 3 \text{ mole } \text{KMnO}_4$

$$\therefore 'Y' = \frac{3 \times 2}{5}$$

257 **(b)**

$$H_2S + Cl_2 \rightarrow 2HCl + S$$

258 (c)

Meq. of salt = Meq. Of Na_2SO_3

$$50 \times 0.1 \times n = 25 \times 0.1 \times 2$$

$$\therefore n = 1$$
 (change in ox. no.)

$$M^{3+} + e \rightarrow M^{2+}$$

259 (a)

 ${\rm Cu}^{2+}$ is more stable than ${\rm Cu}^+$ although later, has $3d^{10}$ configuration. In ${\rm Cu}^+18$ electron core is not held properly by nuclear charge and thus, ${\rm Cu}^+$ is readily converted to ${\rm Cu}^{2+}$.

260 (c)

: In this reaction phosphorus is simultaneously oxidised and reduced.

: It is disproportionation reation.

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

261 (a)

$$S + 2e \rightarrow S^{2-}$$
.

262 (d)

All terms have same meaning.

263 (b)

The sum of the oxidation states is always zero in neutral compound.

The oxidation state of X, Y, and Z are +2, +5 and -2 respectively.

5. $\operatorname{In} X_2 Y Z_6$

$$2 \times 2 + 5 + 6(-2) \neq 0$$

6. $\ln XY_2Z_6$

$$2 + 5 \times 2 + 6(-2) = 0$$

7. $\ln XY_5$

$$2+5\times5\neq0$$

8. $\operatorname{In} X_3 Y Z_4$

$$3 \times 2 + 5 + 4(-2) \neq 0$$

Hence, the formula of the compound is XY_2Z_6 .

264 (c)

F is most electronegative element and thus, has -1 ox.no.

Thus,
$$a + (-2) = 0$$

$$a = +2$$

265 (a)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$(Cr^{6+})_2 + 6e \rightarrow 2Cr^{3+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

Meq. of Fe^{2+} = Meq. of $KMnO_4$ = Meq. of $K_2Cr_2O_7$

$$1 \times 5 \times V_{\text{KMnO}_4} = 1 \times 6 \times V_{\text{K}_2\text{Cr}_2\text{O}_7}$$

$$\therefore V_{\text{KMnO}_4} = \frac{6}{5} V_{\text{K}_2\text{Cr}_2\text{O}_7}$$

266 (b)

Meq. of KMnO₄ in 1 mL = Meq. of Fe =
$$\frac{5 \times 10^{-3}}{56/1} \times 10^{3}$$

: Meq. if KMnO₄ in 250 mL =
$$\frac{5 \times 250}{56/1}$$

Thus,
$$\frac{w}{31.6} \times 1000 = \frac{5 \times 250}{56/1} = 0.7 \text{ g}$$

267 (c)

Let the oxidation number of Cr in K_2CrO_4 is x.

$$2(+1) + x + 4(-2) = 0$$

$$2 + x - 8 = 0$$

$$x = +6$$

268 (b)

$$2S_2^{2+} \rightarrow S_4^{5/2} + 2e$$

269 (c

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$E = M/5$$

270 (c)

Let the oxidation number of Cr be x

$$+1 \times 2 + 2x + 7(-2) = 0$$

$$2 + 2x - 14 = 0$$

$$2x = 12$$

$$x = 6$$

$$Mn^{2+} \rightarrow Mn^{4+} + 2e$$

272 (c)

$$S^{4+} + 4e \rightarrow S^0$$
; SO_2 is reduced and thus, oxidant.

273 **(b)**

$$2H^- \rightarrow H_2 + 2e$$

274 (b)

Let the oxidation number of carbonyl carbon in methanal (HCHO) and methanoic acid (HCOOH) is 286 (c) x and y is respectively.

In HCHO,

$$2(+1) + x + (-2) = 0$$

$$2+x-2=0$$

$$x = 0$$

In HCOOH,

$$2(+1) + y + 2(-2) = 0$$

$$2+y-4=0$$

$$y = 2$$

275 (c)

$$I_2^0 \rightarrow 2I^{5+} + 10e$$

$$\therefore E = \frac{M}{10} = \frac{254}{10} = 25.4$$

276 (c)

$$4e + S^{4+} \rightarrow S^0$$

$$E_{SO_2} = \frac{64}{4} = 16$$

277 (a)

$$M^{5+} \rightarrow M^{7+} + 2e$$
; M^{5+} is reductant.

278 (a)

$$Li + H_2 \rightarrow 2LiH$$

Oxidation number of hydrogen is decreasing from 0 to -1. So, H_2 is acting as oxidising agent in this reaction.

279 (d)

Mohr's salt is FeSO₄. (NH₄)₂ SO₄. 6H₂O

$$Fe^{2+} \rightarrow Fe^{3+} + e \times 6$$

$$6e + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} \times 1$$

1 faraday of electricity involves change of one mole 296 (d) electron.

$$Fe^{2+} + 2e \rightarrow Fe$$

281 (c)

Oxidation of Co and reduction of Cu2+ is taking

282 (a)

$$4 \times 1 + a + 6 \times (-2) = -1$$

$$\therefore a = +7$$

283 (a)

$$a+3\times(+1)=0$$

$$\therefore a = -3$$

284 (c)

$$2MnCl_2 + 5PbO_2 + 6HNO_3$$

$$\rightarrow$$
 2HMnO₄ + 2PbCl₂
+ 3Pb(NO₃)₂ + 2H₂O

285 (d)

$$4 \times 1 + a + 4 \times (-1) = 0$$

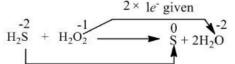
$$a = 0$$

Ox. no. of each species remains same.

287 (a)

$$Mn^{7+} + 2e \rightarrow Mn^{5+}$$
.

288 (a)


$$4 \times 1 + a + 6 \times (-1) = 0$$

$$\therefore a = +2$$

289 (a)

$$2NH_3 + OCl^- \rightarrow N_2H_4 + Cl^- + H_2O$$

290 (d)

H₂S - Oxidation, Reducing agent.

H₂O₂ - Reduction, Oxidising agent.

291 (d)

$$S^{4+} \rightarrow S^{6+} + 2e$$
.

292 (b)

$$a+2\times 1-1=0$$

$$\therefore a = -1$$

$$2Cu^{2+} + 2e \rightarrow Cu_2^{1+}$$

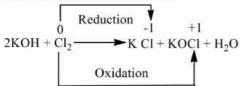
$$\therefore E = \frac{M}{1}$$

294 (c)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+};$$

 $Cr^2O_7^{2-}$ is reduced.

295 (a)


$$Sn^0 \rightarrow Sn^{4+} + 4e$$

$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

297 (c)

The reactions, in which the same element is oxidised as well as reduced, are called disproportionation reactions.

In this reaction, the same element, ie., Cl_2 is oxidised as well as reduced, so it is an example of disproportionation reaction.

$$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{I}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} + 3\text{I}_2$$

 $\text{Cr}_2\text{O}_7^{2-}$ is reduced to Cr^{3+} .

Thus, final state of Cr is +3. Hence, (a)

299 (d)

NaNO₂ (Sodium nitrite) acts both as oxidising as well as reducing agent because in it N-atom is in +3 oxidation state (intermediate oxidation state). Oxidising property

$$\begin{aligned} 2\text{NaNO}_2 + 2\text{KI} + 2\text{H}_2\text{SO}_4 \\ &\longrightarrow \text{Na}_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 2\text{NO} \\ &+ 2\text{H}_2\text{O} + \text{I}_2 \end{aligned}$$

Reducing property

$$H_2O_2 + NaNO_2 \rightarrow NaNO_3 + H_2O$$

Graphic is uncombined state of carbon.

$$6 \times a + 12 \times 1 + 6 \times (-2) = 0$$

 $\therefore a = 0$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

303 (a)

$$2 \times 2 + 2 \times a + 7 \times (-2) = 0$$

$$\therefore a = +5$$

304 (c)

Eq. of
$$Cl_2 = eq.$$
 of chloride

$$1 \times 2 = \frac{111}{E + 35.5}$$

$$\therefore E = 40$$

$$\therefore M = 40 \times 2 = 80$$
 (Metal is bivalent.)

305 (b)

It is chromium peroxide.

Let the oxidation number of Cr is "x".

$$Cr^{x+} + O_2^- + O^{2-} + O_2^- - CrO_5$$

$$x + (-1)2 + (-1)2 + (-2)1 = 0$$

$$x - 6 = 0$$

$$x = +6$$

Hence, the oxidation state of Cr is +6.

306 (d)

Haematite is Fe₂O₃, in which oxidation number of

Magnetite is Fe₃O₄ which is infact a mixed oxide (FeO. Fe2O3.), hence iron is present in both II and III oxidation state.

307 (c)

$$K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4$$

(red-orange) (lemon-yellow)

(red-orange)

308 (a)

In basic medium

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

Net reaction is

$$MnO_4^- \rightarrow MnO_4^{-2}$$

Change in oxidation number

$$=7-6 = +1$$

So, electrons involved = $1e^{-}$

309 (a)

In NH_4^+ , N has ox.no. -3 and in NO_3^- , N has ox.no.

310 (c)

$$a+6\times(-1)=-2$$

$$a = +4$$

311 (c)

$$1+1\times(-2)+a=0$$

$$\therefore a = +1$$

312 (a)

$$e + N^{5+} \rightarrow N^{4+}$$
; Thus, HNO₃ is oxidant.

313 (a)

$$H^0 \rightarrow H^{1+} + le$$
.

314 (d)

 $S \xrightarrow{O_2} SO_2 \xrightarrow{CI_2} SO_4^{2-} \xrightarrow{BaCI_2} BaSO_4One mole of S will give$ one mole of BaSO₄. Thus, mole of BaSO₄ formed = mole of S = $\frac{8}{32} = \frac{1}{4}$

315 (d)

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$$

 $[Fe^{2+}C_2^{3+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$

316 (c)

Equal equivalent of species react together.

317 (a)

It is a fact.

318 (c)

balanced disproportionation involving white phosphorus with aq. NaOH is

Oxidation of
$$P^0$$
 to P^{+1} state
$$P_4^0 + 3\text{NaOH} + 3\text{H}_2\text{O} \longrightarrow \text{PH}_3 + 3\text{NaH}_2\text{PO}_2$$
Reduction of P^0 to P^{-3} state

319 (b)

F can have only -ve ox.no., *i.e.*, $2e + F_2^0 \rightarrow 2F^{1-}$ or F_2 can be reduced only.

320 (a)

$$(N^{0})_{2} + 6e \rightarrow 2(N^{3-})$$

 $3(H^{0})_{2} \rightarrow 2(H^{+1})_{3} + 6e$
 $E_{N_{2}} = \frac{28}{6}$; $E_{NH_{3}} = \frac{17}{3}$

321 **(a**)

 $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$; thus, matter is reduced by liberated hydrogen.

322 (c)

 N_2 undergoes oxidation and reduction as well; $N_2^0 \rightarrow 2N^{3+} + 6e$; $N_2^0 + 6e \rightarrow 2N^{3-}$

323 **(b)**

$$M^{3+} \rightarrow M^{6+} + 3e$$
.

324 (a)

$$2H^- \rightarrow H_2 + 2e$$
; Thus, H^- is oxidized.

325 (d)

All these substances can accept electrons and can decrease their oxidation number and hence, all these act as oxidation agent

$$^{+5}_{\mathrm{HNO_3}}$$
 $\overset{+4}{\longrightarrow}$ $^{+2}_{\mathrm{NO_2}}$ or $^{\mathrm{NO}}_{\mathrm{O}}$ or $^{\mathrm{NO}}_{\mathrm{O}}$ $^{-2}_{\mathrm{Cl_2}}$ $\overset{+3}{\longrightarrow}$ $^{+2}_{\mathrm{FeCl_2}}$

326 **(b)**

Meq. of
$$I_2$$
 = Meq. of $Na_2S_2O_3 = 40 \times 0.11$
 $\therefore \frac{w}{254/2} \times 1000 = 40 \times 0.11$

 $w_{\rm I_2} = 0.558 \, \rm g$

327 (a)

$$5e + Mn^{7+} \rightarrow Mn^{2+}$$

 $S^{4+} \rightarrow S^{6+} + 2e$

328 (c)

Meq. of HNO₃ = 1000 × 2 = 2000

$$\therefore \frac{w}{63/3} \times 1000 = 2000$$

$$\therefore w = 42 \text{ g}$$

329 (c)

The chemical structure of $H_2S_2O_8$ is as follows O O

$$H - o - s - o - o - s - o - H$$
 $\begin{vmatrix} | & | & | \\ 0 & 0 & 0 \\ 2 \times (+1) + 2 \times x + 6 \times (-2) + 2 \times (-1) = 0 \\ \text{for } H & \text{for } S & \text{for } 0 & \text{for } 0 = 0 \end{vmatrix}$
 $+2 + 2x - 12 - 2 = 0$

2x = +12

$$2x = +1$$

x = +6

330 (a)

 $2e + M^{7+} \longrightarrow M^{5+}, M^{7+}is$ oxidation; M^{+5} is reductant.

331 **(a)** $S^{2-} \rightarrow S^0 + 2e$

$$E = M/2 = \frac{34}{2} = 17$$

332 (a)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$
.

333 **(b)** In N₃H

Oxidation number of $N = -\frac{1}{3}$

In N_2O_4 Oxidation number of N = +4In NH_2OH Oxidation number of N = -1

In NH_3 Oxidation number of N = -3

Hence, in N_2O_4 the oxidation number of nitrogen is highest.

334 **(b)**

Starch +
$$I_2 \rightarrow$$
 Blue

335 **(d)**

$$[2C_2^{3+} \rightarrow 4C^{4+} + 4e] \times 5$$

 $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 4$

336 (a)

$$Fe^{2+} \rightarrow Fe^{3+} + e$$
.

337 (d)

$$3 \times a + (+1) = 0$$
$$\therefore a = -1/3$$

338 (a)

Mole of
$$O_2$$
 formed $= \frac{3}{24} = \frac{1}{8}$
 \therefore Mole of $H_2O_2 = \frac{1}{8} \times 2 = \frac{1}{4}$
 $\therefore 100 \times X = \frac{1}{4} \times 1000 \ (m \text{ mole} = M \times V)$

$$X = 2.5$$

339 (c)

$$2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$$

340 (d)

341 (d)

342 (d)

Al
$$\rightarrow$$
 Al³⁺ + 3e

Thus, $27 \text{ g Al forms Al}^{3+}$ by losing 3N electrons

∴ 13.5 g Al will lose $\frac{3N \times 13.5}{27} = \frac{3}{2} N$ electrons

343 (c)

$$a + 2 \times 1 + 2 \times (-1) = 0$$

a = 0

344 (a)

Mn has +7 oxidation state in KMnO₄.

$$1 + x + 4(-2) = 0$$

$$1 + x - 8 = 0$$

x = +7

345 (a)

Minimum ox.no. = group no. -8.

Maximum ox.no. = group no.

346 (b)

H possesses negative one value of oxidation number in ionic hydrides.

347 (c)

Due to -ve oxidation number it should be nonmetal having six electrons in outer shell.

348 (d)

These are characteristics of indicator.

349 (b)

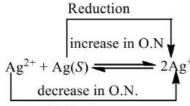
The oxidation state of Xe in both

XeO2 and XeF4 is 4.

$$x + 2(-2) = 0$$
 $x + 4(-1) = 0$

$$x = 4$$
 $x = 4$

350 (a)


 Na_3AsO_4 is sodium arsenate

Or AsO_4^{-3} is arsenate.

Thus,
$$a + 4 \times (-2) = -3$$

$$a = +5$$

351 (d)

Oxidation

Hence, those reactions in which two or more species undergo oxidation as well as reduction are called comproportionation.

352 (b)

$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

353 (c)

Glucose is reducing agent.

354 (b)

$$a + 6 \times (-1) = -3$$

$$a = +3$$

355 (b)

It is a fact.

356 (b)

- . Oxidation state of Mn in $Mn^{2+} = +2$
- 0. Let oxidation state of Mn in $MnO_2 = x$

$$x + (2 \times -2) = 0$$

- x = +4
- (iii) Let the oxidation state of Mn in $KMnO_4 = x$

$$\therefore +1 + x + (-2 \times 4) = 0$$

- $\therefore x = +7$
- iv) Let oxidation state of Mn in $K_2MnO_4 = x$

$$\therefore$$
 $(+1 \times 2) + x + (-2 \times 4) = 0$

- x = +6
- : Increasing order of oxidation states is

357 (b)

 $Meq. of MnO_2 = Meq. of oxalic acid$

$$= 0.16 \times 35 = 56$$

$$\frac{w}{87/2} \times 1000 = 5.6$$

$$w_{\rm MnO_2} = 0.24 \, \rm g$$

358 (a)

More is E_{RP}^0 , more is the tendency to get itself reduced or more is oxidising power.

359 (a)

$$Meq. of KMnO_4 = 3750 \times 0.85$$

$$\therefore \frac{w}{31.6} \times 1000 = 3750 \times 0.85$$

$$w = 100.7 \, \text{g}$$

360 (c)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

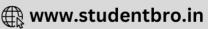
361 (a)

$$Cu^{2+} + 2e \rightarrow Cu$$

362 (a

It is definition of iodimetric titrations.

363 (b)


$$M^{n+} + ne \rightarrow M$$

364 (b)

$$le + Mn^{7+} \rightarrow Mn^{6+}$$

$$\therefore E = M/1$$

365 (a)

$$1 + a + 3 \times (-2) = 0$$

 $\therefore a = +5$

366 (d)

: 3 ions of F- from 1 molecule of AIF3

 $\therefore 3 \times 10^{23}$ ions of F⁻from 10^{23} molecules of AIF₃

367 (a)

Calculate ox.no. by taking NO+ in NOCl

368 (d)

Cl ha +7 ox.no. in Cl_2O_7 .

369 (c)

$$Meq. of KMnO_4 = 4000 \times 0.05$$

$$\therefore \frac{w}{31.6} \times 1000 = 4000 \times 0.05$$
$$w = 6.32 \,\mathrm{g}$$

370 (c)

 H_2O_2 oxidises S^{2-} to S^0 .

371 (a)

Following is balanced redox reaction.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+$$

 $\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

So, coefficients of

 MnO_4^- , $C_2O_4^{2-}$ and H^+ are 2,5, and 16 respectively.

$$2 \times a + 1 \times (-2) = 0$$

$$a = +1$$

373 (d)

Oxidation-reduction takes place simultaneously.

374 (b)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+};$$

$$\therefore \text{ Eq. wt.} = \frac{\text{mol. wt.}}{6}$$

375 (a)

$$S^{4+} \rightarrow S^{6+} + 2e$$

$$10e + 2I^{5+} \rightarrow I_2^0$$

376 (b)

 F_2 shows only -1 ox.no.

377 (a)

Reduction (oxidation number decreases)

Oxidation (oxidation number is increases)

The reactions in which the same substance undergoes oxidation as well as reduction, are called disproportionation reactions.

So, the above reaction is an example of disproportionation reaction.

378 (b)

It is definition of iodimetric titrations.

379 (d)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$

380 (b)

+2 oxidation state due to $1s^2, 2s^2, 2p^2$ configuration having 2 unpaired electrons in 2p –subshell. +4oxidation $to1s^2$, $2s^12p^3$ configuration in excited state having four unpaired electrons.

381 (a)

$$Meq. if SnCl_2 = Meq. of HgCl_2$$

$$0.5 \times V = 600 \times 0.1$$

$$\therefore V = 120 \text{ mL}$$

382 (a)

Meq. of FeSO₄ = Meq. of KMnO₄ = 200
$$\times$$
 1

$$\therefore \frac{w}{152/1} \times 1000 = 200$$

$$w = 30.4 \text{ g}$$

383 (a)

$$Meq. of Fe = Meq. of K_2Cr_2O_7$$

$$\frac{w}{56/1} \times 1000 = 1 \times 0.1055$$

$$w = 5.9 \times 10^{-3} \text{ g} = 5.9 \text{ mg}$$

384 (d)

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$\frac{(C^{3+})_2 \to 2C^{4+} + 2e}{[FeC_2O_4 \to Fe^{3+} + 2C^{4+} + 3e] \times 5}$$

$$\therefore 3 \text{ mole MnO}_4^- \equiv 5 \text{ mole FeC}_2O_4$$

385 (c)

The sum of oxidation number is zero.

386 (c)

Electrons released at anode = Electrons used at cathode.

388 (c)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$

389 (b)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

390 (d)

Loss of an electron or increase in oxidation number is oxidation process.

i.e.,
$$H^- \rightarrow H + e^-$$

391 (c)

Due to inert pair effect which is more predominant in T1.

392 (a)

$$Fe^{2+} \rightarrow Fe^{3+} + le$$


$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$$

Thus, electrons involved per Cr atom = 3.

393 (a)

Let oxidation state of Cr in $K_2Cr_2O_7 = x$

$$(+1 \times 2) + 2x + (-2 \times 7) = 0$$

or
$$+2 + 2x - 14 = 0$$

$$x = +6$$

Let oxidation state of Cr in $K_2CrO_4 = x$

$$+1 \times 2 + x + (-2 \times 4) = 0$$

$$2+x-8=0$$

$$x = 6$$

: Change in oxidation state of Cr is zero when it changes from

394 (b)

In HNO_2 , the oxidation number of N is +3 which is less than the maximum possible, oxidation number 406 **(b)** ie, +5 and more than the minimum possible oxidation number ie, -3, therefore, it can act both as an oxidizing as well as reducing agent

395 (a)

Ox. No. of N in
$$N_3H$$
, NH_2OH , N_2H_4 , NH_3 are $-\frac{1}{3}$, -1 , -2 , -3 respectively.

396 (a)

$$Mn^{6+} \rightarrow Mn^{7+} + Ie$$

$$Mn^{6+} + 2e \rightarrow Mn^{4+}$$

$$3MnO_4^{2-} \rightarrow 2MnO_4^{-} + Mn^{4+}$$

FeCl3 cannot be oxidised because Fe has highest oxidation state.

398 (d)

$$Meq. of KMnO_4 = Meq. Of Cl_2$$

$$1 \times 5 \times 1000 = \frac{w}{(71/2)} \times 1000$$

$$w = 177.5 \, g$$

$$\therefore V_{Cl_2} = 56$$
 litre at NTP

$$Fe^{2+} \rightarrow Fe^{3+} + e$$
; $O_2^{1-} + 2e \rightarrow 20^{2-}$;

H₂O₂ acts as oxidant.

400 (b)

Let oxidation state of I in IPO₄ = 'x'.

$$x + (-3) = 0$$

 (PO_4^{3-}) ion has charge equal to -3

$$x = +3$$

401 (a)

In alkaline medium

$$KMnO_4 + OH^- \rightarrow K_2MnO_4$$

Change in oxidation number

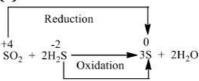
$$=7-6$$

Hence, moles of KI = moles of KMnO₄.

402 (c)

5 mole I- gives 3 mole I2

403 (c)


$$2 \times 1 + 2 \times a + 7 \times (-2) = 0$$

$$a = +6$$

404 (c)

The concentration of standard solution is known.

405 (a)

: H₂S is oxidised in this reaction.

$$HP_2O_7^{-2}$$

$$+1+2x-2\times 7=-1$$

$$x = +6$$

407 (b)

Iron usually shows zero, +2, +3 oxidation state.

Calculate ox.no. of Cl in NOCIO₄ by assuming CIO₄ and NO+.

409 (b)

$$2e + H_2^0 \rightarrow 2H^{1-}$$

$$Li \rightarrow Li^{1+} + e$$

H2 is reduced and thus, oxidant.

410 (b)

$$S^{4+} \rightarrow S^{6+} + 2e$$

411 (a)

$$a+2\times(-2)=0$$

$$a = +4$$

Ox.no. Fe in Mohr's salt, [FeSO₄. (NH₄)₂SO₄. 6H₂O] is +2.

413 (a)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$
; $Fe^{2+} \rightarrow Fe^{3+} + e$

414 (d)

$$2K[Ag(CN)_2] + Zn \rightarrow 2Ag +$$

 $K_2[Zn(CN)_4]$

$$2K[Ag(CN)_2] + Zn \longrightarrow 2Ag + K_2[Zn(CN)_4]$$
Reduction Oxidation

415 (b)

$$\mathrm{Meq.\,of}\,\mathrm{K_2Cr_2O_7} = \mathrm{Meq.\,of}\,\mathrm{H_2S}$$

$$2 \times V = \frac{0.81}{34/2} \times 1000$$

$$\therefore V = 23.8 \text{ mL}$$

416 (a)

$$3 \times 1 + a + 4 \times (-2) = 0$$

∴
$$a = +5$$
417 **(b)**

$$3Fe^{0} \rightarrow Fe_{3}^{+(8/3)} + 8e$$
∴ $E = \frac{M}{8/3} = \frac{56 \times 3}{8} = 21$

418 (d)

Permonosulphuric acid (H₂SO₅) has two oxygen atoms in peroxide linkage, hence,

$$2(+1) + x + 2(-1) + 3(-2) = 0$$

$$2 + x - 2 - 6 = 0$$

$$x = +6$$

419 (c)

The reaction, in which two or more species undergo reduction as well as oxidation to give a single species are called comproportionation reaction. This is reverse of disproportionation reaction.

$$Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$$

420 (d)

HCl is also oxidised along with oxalic acid by $KMnO_4$.

 $2KMnO_4 + 16HCl$

$$\begin{array}{c} \longrightarrow 2 \text{KCl} + 2 \text{MnCl}_2 + 5 \text{Cl}_2 + 8 \text{H}_2 \text{O} \\ 2 \text{KMnO}_4 + 3 \text{H}_2 \text{SO}_4 + 5 \text{H}_2 \text{C}_2 \text{O}_4 \\ \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 8 \text{H}_2 \text{O} \\ + 10 \text{CO}_2 \end{array}$$

421 (a)

No change in oxidation no.in any of the species.

422 (d)

S in H_2SO_3 is in +4 oxidation state. It lies in between its maximum and minimum oxidation state, *i.e*, +6 and -2 and thus, S can increase or decrease its ox.no.as the case may be.

